中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛铝基多元合金氮化层的耐磨性能研究

张倩 马兰 杨绍利 朱奎松

张倩, 马兰, 杨绍利, 朱奎松. 钛铝基多元合金氮化层的耐磨性能研究[J]. 钢铁钒钛, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013
引用本文: 张倩, 马兰, 杨绍利, 朱奎松. 钛铝基多元合金氮化层的耐磨性能研究[J]. 钢铁钒钛, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013
Zhang Qian, Ma Lan, Yang Shaoli, Zhu Kuisong. Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013
Citation: Zhang Qian, Ma Lan, Yang Shaoli, Zhu Kuisong. Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013

钛铝基多元合金氮化层的耐磨性能研究

doi: 10.7513/j.issn.1004-7638.2023.05.013
基金项目: 攀枝花市重点科技计划项目(2021CY-G-14)。
详细信息
    作者简介:

    张倩,1997年出生,重庆合川人,硕士研究生,主要从事钒钛资源综合利用研究,E-mail:1421735661@qq.com

    通讯作者:

    马兰,1972年出生,女,四川资阳人,教授,主要从事钒钛新材料新技术及钒钛资源综合利用研究,E-mail:yangslsl@163.com

  • 中图分类号: TF823

Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys

  • 摘要: 以攀枝花酸溶性钛渣、铝粉、氧化钙为原料制备钛铝基多元合金,并将钛铝基多元合金在不同温度不同时间条件下直接氮化处理,得到氮化层。采用扫描电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机、三维形貌仪等对制得的氮化层的性能进行检测分析。结果表明,在不同条件下对钛铝基多元合金进行直接氮化,均能提高合金的表面硬度及耐磨性。氮化温度对合金硬度及耐磨性能的影响较大,氮化时间为2 h时,适宜的氮化温度为800 ℃,此时氮化层的平均硬度(HV)高达698.8,平均摩擦系数为0.120,往复摩擦的磨损率为19.44 mm3/(N·m),表面粗糙度为0.731 μm;氮化温度为900 ℃时,适宜的氮化时间为3 h,此时得到的氮化层硬度(HV)为682.6,平均摩擦系数为0.059,往复摩擦的磨损率为9.48 mm3/(N·m),表面粗糙度为0.601 μm。
  • 图  1  不同温度制得的氮化层物相组成

    Figure  1.  Phase compositions of nitrided layer prepared at different temperatures

    图  2  不同温度下制得的氮化层的表面及基体结合层的SEM

    (a)800 ℃;(b)900 ℃;(c)1000 ℃;(d)1100 ℃;(e)1200 ℃;(e1)1200 ℃氮化层表面微观结构

    Figure  2.  SEM of nitriding coating surface and substrate binding layer prepared at different temperatures

    图  3  不同温度下氮化层氮含量(原子分数)平均值

    Figure  3.  The average nitrogen content of nitrided layer at different temperatures

    图  4  不同温度下制得的氮化层的显微硬度

    Figure  4.  Microhardness of nitriding coatings prepared at different temperatures

    图  5  不同氮化温度下制得的氮化层的摩擦系数变化情况

    Figure  5.  Changes of friction coefficient of nitriding layer prepared at different nitriding temperatures

    图  6  不同氮化温度制得的氮化层的三维形貌

    Figure  6.  3D morphologies of coatings prepared at different nitriding temperatures

    图  7  不同氮化时间制得的氮化层的物相分析

    Figure  7.  Phase analysis of coatings prepared with different nitriding time

    图  8  不同氮化时间条件下制得的氮化层的表面及基体结合层的SEM图像

    (a)1 h;(b)2 h;(c)3 h;(d)4 h;(e)5 h;(f)原样

    Figure  8.  SEM images of the coating surface and substrate binding layer prepared under different nitriding time

    图  9  不同氮化时间制得的氮化层的表面及基体结合层的EDS中平均N含量(原子分数)

    Figure  9.  EDS mean N content of nitriding layer surface and matrix binding layer prepared under different nitriding time

    图  10  不同氮化时间条件下制得的氮化层的显微硬度

    Figure  10.  Microhardness of coatings prepared at different nitriding time

    图  11  不同保温时间下制得的氮化层的摩擦系数变化情况

    Figure  11.  Changes of friction coefficient of nitriding layer prepared under different holding time

    图  12  不同氮化时间条件下制得的氮化层磨损后的三维形貌

    Figure  12.  3D morphologies of worn nitriding coatings prepared at different nitriding time

    表  1  钛铝基多元合金化学组成

    Table  1.   Chemical composition of Ti-Al base multielement alloy %

    TiAlFeSiMnO
    50.1138.166.881.433.350.07
    下载: 导出CSV

    表  2  氮化温度不同制得的氮化层的磨损量、磨损体积及磨损率

    Table  2.   Wear amount, wear volume and wear rate of coatings prepared at different nitriding temperatures

    氮化温度/℃磨损量/g磨损体积/mm3磨损率/[mm3·(N·m)−1]
    原样0.000178.69×10−334.76
    8000.000064.86×10−319.44
    9000.000097.91×10−331.64
    10000.000136.30×10−325.2
    11000.000117.05×10−328.2
    12000.000136.47×10−325.88
    下载: 导出CSV

    表  3  氮化时间不同的氮化层的磨损量、磨损体积及磨损率

    Table  3.   Wear amount, wear volume and wear rate of nitriding coatings with different nitriding time

    氮化时间/h磨损量/g磨损体积/mm3磨损率/[mm3·(N·m)−1]
    原样0.000178.69×10−334.76
    10.000168.60×10−334
    20.000097.91×10−331.64
    30.000042.37×10−39.48
    40.000106.97×10−327.88
    50.000073.36×10−313.44
    下载: 导出CSV
  • [1] Guo Li, He Weixia, Zhou Peng, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020,49(22):22−28. (郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景[J]. 热加工工艺, 2020,49(22):22−28.

    Guo Li, He Weixia, Zhou Peng, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020, 49(22): 22-28.
    [2] Narayana P L, Li C L, Kim S W, et al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800 °C[J]. Materials Science and Engineering A, 2019,756:41−45. doi: 10.1016/j.msea.2019.03.114
    [3] Chen R, Wang Q, Yang Y H, et al. Brittle-ductile transition during creep in nearly and fully lamellar high-Nb TiAl alloys[J]. Intermetallics, 2018,93:47−54. doi: 10.1016/j.intermet.2017.11.009
    [4] Song L, Hu X G, Zhang T B, et al. Precipitation behaviors in a quenched high Nb-containing TiAl alloy during annealing[J]. Intermetallics, 2017,89:79−85. doi: 10.1016/j.intermet.2017.05.025
    [5] Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016,15:876−882. doi: 10.1038/nmat4677
    [6] Wu H, Fan G H, Geng L, et al. Nanoscale origins of the oriented precipitation of Ti3Al in Ti-Al systems[J]. Scripta Materialia, 2016,125:34−38. doi: 10.1016/j.scriptamat.2016.07.037
    [7] Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titanium aluminides[J]. Progress in Materials Science, 2016,81:55−124. doi: 10.1016/j.pmatsci.2016.01.001
    [8] 潘健生, 胡明娟. 热处理工艺学[M]. 北京: 高等教育出版社, 2009: 514-527.

    Pan Jiansheng, Hu Mingjuan. Heat treatment technology[M]. Beijing: Higher Education Press, 2009: 514-527.
    [9] 马鹏飞, 李美兰. 热处理技术[M]. 北京: 化学工业出版社, 2009: 116-127.

    Ma Pengfei, Li Meilan. Heat treatment technology[M]. Beijing: Chemical Industry Press, 2009: 116-127.
    [10] Stappen M Van, Stals L M, Kerkhofs M, et al. State of the art for the industrial use of ceramic PVD coatings[J]. Surface and Coatings Technology, 1995,74-75(2):629−633.
    [11] Zhang Minghai, Yang Gangbin. Research progress of Lanxide materials[J]. Journal of Luoyang Technical College, 2006,(1):5−7. (张明海, 杨刚宾. Lanxide材料及其研究进展[J]. 洛阳工业高等专科学校学报, 2006,(1):5−7.

    Zhang Minghai, Yang Gangbin. Research progress of Lanxide materials[J]. Journal of Luoyang Technical College, 2006(1): 5-7.
    [12] 史程程. P/M 钛铝基合金的热变形行为与等温锻造/扩散连接工艺[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Shi Chengcheng. Thermal deformation behavior and isothermal forging/diffusion bonding process of P/M Ti-Al base alloys[D]. Harbin: Harbin Institute of Technology, 2019.
    [13] Li Yong, Wang Qiulin, Zhu Jinbo, et al. Technology status and prospect of titanium aluminum alloy prepared by powder metallurgy[J]. Journal of Chengdu Aeronautical Vocational and Technical College, 2020,36(3):74−77,80. (李勇, 王秋林, 朱金波, 等. 粉末冶金制备钛铝合金技术现状及展望[J]. 成都航空职业技术学院学报, 2020,36(3):74−77,80.

    Li Yong, Wang Qiulin, Zhu Jinbo, et al. Technology status and prospect of titanium aluminum alloy prepared by powder metallurgy[J]. Journal of Chengdu Aeronautical Vocational and Technical College, 2020, 36(3): 74-77+80.
    [14] Li Jun, Wu Enhui, Yang Shaoli, et al. Study on vacuum magnetic levitation refining of titanium aluminum alloy prepared by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2019,40(2):41−49. (李军, 吴恩辉, 杨绍利, 等. 电铝热还原法制备的钛铝合金真空磁悬浮精炼研究[J]. 钢铁钒钛, 2019,40(2):41−49.

    Li Jun, Wu Enhui, Yang Shaoli, et al. Study on vacuum magnetic levitation refining of titanium aluminum alloy prepared by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2019, 40(2): 41-49.
    [15] Li Jun, Lu Xiongang, Yang Shaoli, et al. Theoretical and experimental study on preparation of TiAl alloy by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2017,38(5):46−52. (李军, 鲁雄刚, 杨绍利, 等. 电铝热还原法制备TiAl合金理论及试验研究[J]. 钢铁钒钛, 2017,38(5):46−52.

    Li Jun, Lu Xiongang, Yang Shaoli, et al. Theoretical and experimental study on preparation of TiAl alloy by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 46-52.
    [16] Piao Rongxun, Yang Shaoli, Ma Lan, et al. Vacuum electromagnetic levitation melting of Ti-Al based alloy prepared by aluminothermic reduction of acid soluble Ti bearing slag[J]. Metals and Materials International, 2020,26:130−142. doi: 10.1007/s12540-019-00295-2
    [17] Li Y M, Yue Q B, He H B, et al. Friction and wear characteristics of 20Cr steel substrate and TiAlN coating under different lubrication conditions[J]. International Journal of Precision Engineering and Manufacturing, 2018,19(10):1521−1528. doi: 10.1007/s12541-018-0179-8
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  86
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回