留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛铝基多元合金氮化层的耐磨性能研究

张倩 马兰 杨绍利 朱奎松

张倩, 马兰, 杨绍利, 朱奎松. 钛铝基多元合金氮化层的耐磨性能研究[J]. 钢铁钒钛, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013
引用本文: 张倩, 马兰, 杨绍利, 朱奎松. 钛铝基多元合金氮化层的耐磨性能研究[J]. 钢铁钒钛, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013
Zhang Qian, Ma Lan, Yang Shaoli, Zhu Kuisong. Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013
Citation: Zhang Qian, Ma Lan, Yang Shaoli, Zhu Kuisong. Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013

钛铝基多元合金氮化层的耐磨性能研究

doi: 10.7513/j.issn.1004-7638.2023.05.013
基金项目: 攀枝花市重点科技计划项目(2021CY-G-14)。
详细信息
    作者简介:

    张倩,1997年出生,重庆合川人,硕士研究生,主要从事钒钛资源综合利用研究,E-mail:1421735661@qq.com

    通讯作者:

    马兰,1972年出生,女,四川资阳人,教授,主要从事钒钛新材料新技术及钒钛资源综合利用研究,E-mail:yangslsl@163.com

  • 中图分类号: TF823

Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys

  • 摘要: 以攀枝花酸溶性钛渣、铝粉、氧化钙为原料制备钛铝基多元合金,并将钛铝基多元合金在不同温度不同时间条件下直接氮化处理,得到氮化层。采用扫描电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机、三维形貌仪等对制得的氮化层的性能进行检测分析。结果表明,在不同条件下对钛铝基多元合金进行直接氮化,均能提高合金的表面硬度及耐磨性。氮化温度对合金硬度及耐磨性能的影响较大,氮化时间为2 h时,适宜的氮化温度为800 ℃,此时氮化层的平均硬度(HV)高达698.8,平均摩擦系数为0.120,往复摩擦的磨损率为19.44 mm3/(N·m),表面粗糙度为0.731 μm;氮化温度为900 ℃时,适宜的氮化时间为3 h,此时得到的氮化层硬度(HV)为682.6,平均摩擦系数为0.059,往复摩擦的磨损率为9.48 mm3/(N·m),表面粗糙度为0.601 μm。
  • 图  1  不同温度制得的氮化层物相组成

    Figure  1.  Phase compositions of nitrided layer prepared at different temperatures

    图  2  不同温度下制得的氮化层的表面及基体结合层的SEM

    (a)800 ℃;(b)900 ℃;(c)1000 ℃;(d)1100 ℃;(e)1200 ℃;(e1)1200 ℃氮化层表面微观结构

    Figure  2.  SEM of nitriding coating surface and substrate binding layer prepared at different temperatures

    图  3  不同温度下氮化层氮含量(原子分数)平均值

    Figure  3.  The average nitrogen content of nitrided layer at different temperatures

    图  4  不同温度下制得的氮化层的显微硬度

    Figure  4.  Microhardness of nitriding coatings prepared at different temperatures

    图  5  不同氮化温度下制得的氮化层的摩擦系数变化情况

    Figure  5.  Changes of friction coefficient of nitriding layer prepared at different nitriding temperatures

    图  6  不同氮化温度制得的氮化层的三维形貌

    Figure  6.  3D morphologies of coatings prepared at different nitriding temperatures

    图  7  不同氮化时间制得的氮化层的物相分析

    Figure  7.  Phase analysis of coatings prepared with different nitriding time

    图  8  不同氮化时间条件下制得的氮化层的表面及基体结合层的SEM图像

    (a)1 h;(b)2 h;(c)3 h;(d)4 h;(e)5 h;(f)原样

    Figure  8.  SEM images of the coating surface and substrate binding layer prepared under different nitriding time

    图  9  不同氮化时间制得的氮化层的表面及基体结合层的EDS中平均N含量(原子分数)

    Figure  9.  EDS mean N content of nitriding layer surface and matrix binding layer prepared under different nitriding time

    图  10  不同氮化时间条件下制得的氮化层的显微硬度

    Figure  10.  Microhardness of coatings prepared at different nitriding time

    图  11  不同保温时间下制得的氮化层的摩擦系数变化情况

    Figure  11.  Changes of friction coefficient of nitriding layer prepared under different holding time

    图  12  不同氮化时间条件下制得的氮化层磨损后的三维形貌

    Figure  12.  3D morphologies of worn nitriding coatings prepared at different nitriding time

    表  1  钛铝基多元合金化学组成

    Table  1.   Chemical composition of Ti-Al base multielement alloy %

    TiAlFeSiMnO
    50.1138.166.881.433.350.07
    下载: 导出CSV

    表  2  氮化温度不同制得的氮化层的磨损量、磨损体积及磨损率

    Table  2.   Wear amount, wear volume and wear rate of coatings prepared at different nitriding temperatures

    氮化温度/℃磨损量/g磨损体积/mm3磨损率/[mm3·(N·m)−1]
    原样0.000178.69×10−334.76
    8000.000064.86×10−319.44
    9000.000097.91×10−331.64
    10000.000136.30×10−325.2
    11000.000117.05×10−328.2
    12000.000136.47×10−325.88
    下载: 导出CSV

    表  3  氮化时间不同的氮化层的磨损量、磨损体积及磨损率

    Table  3.   Wear amount, wear volume and wear rate of nitriding coatings with different nitriding time

    氮化时间/h磨损量/g磨损体积/mm3磨损率/[mm3·(N·m)−1]
    原样0.000178.69×10−334.76
    10.000168.60×10−334
    20.000097.91×10−331.64
    30.000042.37×10−39.48
    40.000106.97×10−327.88
    50.000073.36×10−313.44
    下载: 导出CSV
  • [1] Guo Li, He Weixia, Zhou Peng, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020,49(22):22−28. (郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景[J]. 热加工工艺, 2020,49(22):22−28.

    Guo Li, He Weixia, Zhou Peng, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020, 49(22): 22-28.
    [2] Narayana P L, Li C L, Kim S W, et al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800 °C[J]. Materials Science and Engineering A, 2019,756:41−45. doi: 10.1016/j.msea.2019.03.114
    [3] Chen R, Wang Q, Yang Y H, et al. Brittle-ductile transition during creep in nearly and fully lamellar high-Nb TiAl alloys[J]. Intermetallics, 2018,93:47−54. doi: 10.1016/j.intermet.2017.11.009
    [4] Song L, Hu X G, Zhang T B, et al. Precipitation behaviors in a quenched high Nb-containing TiAl alloy during annealing[J]. Intermetallics, 2017,89:79−85. doi: 10.1016/j.intermet.2017.05.025
    [5] Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016,15:876−882. doi: 10.1038/nmat4677
    [6] Wu H, Fan G H, Geng L, et al. Nanoscale origins of the oriented precipitation of Ti3Al in Ti-Al systems[J]. Scripta Materialia, 2016,125:34−38. doi: 10.1016/j.scriptamat.2016.07.037
    [7] Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titanium aluminides[J]. Progress in Materials Science, 2016,81:55−124. doi: 10.1016/j.pmatsci.2016.01.001
    [8] 潘健生, 胡明娟. 热处理工艺学[M]. 北京: 高等教育出版社, 2009: 514-527.

    Pan Jiansheng, Hu Mingjuan. Heat treatment technology[M]. Beijing: Higher Education Press, 2009: 514-527.
    [9] 马鹏飞, 李美兰. 热处理技术[M]. 北京: 化学工业出版社, 2009: 116-127.

    Ma Pengfei, Li Meilan. Heat treatment technology[M]. Beijing: Chemical Industry Press, 2009: 116-127.
    [10] Stappen M Van, Stals L M, Kerkhofs M, et al. State of the art for the industrial use of ceramic PVD coatings[J]. Surface and Coatings Technology, 1995,74-75(2):629−633.
    [11] Zhang Minghai, Yang Gangbin. Research progress of Lanxide materials[J]. Journal of Luoyang Technical College, 2006,(1):5−7. (张明海, 杨刚宾. Lanxide材料及其研究进展[J]. 洛阳工业高等专科学校学报, 2006,(1):5−7.

    Zhang Minghai, Yang Gangbin. Research progress of Lanxide materials[J]. Journal of Luoyang Technical College, 2006(1): 5-7.
    [12] 史程程. P/M 钛铝基合金的热变形行为与等温锻造/扩散连接工艺[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Shi Chengcheng. Thermal deformation behavior and isothermal forging/diffusion bonding process of P/M Ti-Al base alloys[D]. Harbin: Harbin Institute of Technology, 2019.
    [13] Li Yong, Wang Qiulin, Zhu Jinbo, et al. Technology status and prospect of titanium aluminum alloy prepared by powder metallurgy[J]. Journal of Chengdu Aeronautical Vocational and Technical College, 2020,36(3):74−77,80. (李勇, 王秋林, 朱金波, 等. 粉末冶金制备钛铝合金技术现状及展望[J]. 成都航空职业技术学院学报, 2020,36(3):74−77,80.

    Li Yong, Wang Qiulin, Zhu Jinbo, et al. Technology status and prospect of titanium aluminum alloy prepared by powder metallurgy[J]. Journal of Chengdu Aeronautical Vocational and Technical College, 2020, 36(3): 74-77+80.
    [14] Li Jun, Wu Enhui, Yang Shaoli, et al. Study on vacuum magnetic levitation refining of titanium aluminum alloy prepared by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2019,40(2):41−49. (李军, 吴恩辉, 杨绍利, 等. 电铝热还原法制备的钛铝合金真空磁悬浮精炼研究[J]. 钢铁钒钛, 2019,40(2):41−49.

    Li Jun, Wu Enhui, Yang Shaoli, et al. Study on vacuum magnetic levitation refining of titanium aluminum alloy prepared by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2019, 40(2): 41-49.
    [15] Li Jun, Lu Xiongang, Yang Shaoli, et al. Theoretical and experimental study on preparation of TiAl alloy by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2017,38(5):46−52. (李军, 鲁雄刚, 杨绍利, 等. 电铝热还原法制备TiAl合金理论及试验研究[J]. 钢铁钒钛, 2017,38(5):46−52.

    Li Jun, Lu Xiongang, Yang Shaoli, et al. Theoretical and experimental study on preparation of TiAl alloy by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 46-52.
    [16] Piao Rongxun, Yang Shaoli, Ma Lan, et al. Vacuum electromagnetic levitation melting of Ti-Al based alloy prepared by aluminothermic reduction of acid soluble Ti bearing slag[J]. Metals and Materials International, 2020,26:130−142. doi: 10.1007/s12540-019-00295-2
    [17] Li Y M, Yue Q B, He H B, et al. Friction and wear characteristics of 20Cr steel substrate and TiAlN coating under different lubrication conditions[J]. International Journal of Precision Engineering and Manufacturing, 2018,19(10):1521−1528. doi: 10.1007/s12541-018-0179-8
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回