中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钛用于硅负极材料表面包覆改性的研究

王仕伟 郑浩 孟伟巍

王仕伟, 郑浩, 孟伟巍. 二氧化钛用于硅负极材料表面包覆改性的研究[J]. 钢铁钒钛, 2023, 44(5): 93-97. doi: 10.7513/j.issn.1004-7638.2023.05.014
引用本文: 王仕伟, 郑浩, 孟伟巍. 二氧化钛用于硅负极材料表面包覆改性的研究[J]. 钢铁钒钛, 2023, 44(5): 93-97. doi: 10.7513/j.issn.1004-7638.2023.05.014
Wang Shiwei, Zheng Hao, Meng Weiwei. Study on surface coating modification of silicon anode material with titanium dioxide[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 93-97. doi: 10.7513/j.issn.1004-7638.2023.05.014
Citation: Wang Shiwei, Zheng Hao, Meng Weiwei. Study on surface coating modification of silicon anode material with titanium dioxide[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 93-97. doi: 10.7513/j.issn.1004-7638.2023.05.014

二氧化钛用于硅负极材料表面包覆改性的研究

doi: 10.7513/j.issn.1004-7638.2023.05.014
详细信息
    作者简介:

    王仕伟,1997年出生,男,四川巴中人,本科,助理工程师,主要从事储能材料研究,E-mail: 2534763740@qq.com

  • 中图分类号: TF823

Study on surface coating modification of silicon anode material with titanium dioxide

  • 摘要: 以TiCl4为钛源,商用纳米Si为硅源,采用水解法制备了核—壳结构的硅@二氧化钛(Si@TiO2)纳米复合材料。借助XRD、SEM、TEM和电化学性能测试等对材料进行了详细研究。结果显示,坚固的TiO2外壳在充放电过程中极大缓解了硅的体积膨胀,使得Si@TiO2展现出较好的电化学性能,其在1600 mAh/g大电流密度下的放电比容量为614.3 mAh/g。电流密度500 mA/g,循环100次后仍有877 mAh/g的放电比容量,容量保持率为51.8%。
  • 图  1  Si和Si@TiO2纳米复合材料的XRD谱

    Figure  1.  XRD diffraction patterns of Si and Si@TiO2 nanocomposites

    图  2  (a) Si的SEM形貌;(b) Si@TiO2的SEM形貌;(c) Si的TEM形貌;(d) Si@TiO2的TEM形貌

    Figure  2.  (a) SEM image of Si; (b) SEM image of Si@TiO2; (c) TEM image of Si; (d) TEM image of Si@TiO2

    图  3  Si@TiO2纳米复合材料的元素分布

    Figure  3.  EDS analysis of Si@TiO2 nanocomposites

    图  4  Si和Si@TiO2纳米复合材料的电化学性能

    Figure  4.  Electrochemical properties of Si and Si@TiO2 nanocomposites

    表  1  不同钛源制备的硅基复合材料储锂性能比较

    Table  1.   Comparison of lithium storage performance of composite materials prepared from different titanium sources

    材料名称钛源合成方法电流密度/(mA·g−1循环次数/次比容量/(mAh·g−1
    C@TiO2@Si[6]钛酸四丁酯溶胶凝胶10050747
    Si/TiOx[14]钛酸异丙酯水解+碳热还原200200704
    中空Si@TiO2@C[7]钛酸四丁酯溶胶—凝胶10002501270.3
    Si@TiO2(本文)四氯化钛水解法500100877
    下载: 导出CSV
  • [1] Zhang Lei, Wu Haobin, Xu Rong, et al. Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage.[J]. Crystengcomm, 2013,15:9332−9335. doi: 10.1039/c3ce40996a
    [2] Cheng Zhongling, Hu Yi, Wu Keshi, et al. Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries[J]. Electrochimica Acta, 2020,337:135789. doi: 10.1016/j.electacta.2020.135789
    [3] Li Bing, Fei Yao, Jung Jun Bae, et al. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries[J]. Scientific Reports, 2015,5:7659. doi: 10.1038/srep07659
    [4] Zhang Wenhui, Luo Gaixia, Xu Qi, et al. Enhanced reversible lithium storage for nano-Si with a <10 nm homogenous porous carbon coating layer[J]. Electrochimica Acta, 2018,269:1−10. doi: 10.1016/j.electacta.2018.02.143
    [5] Jin Y, Li S, Kushima A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science, 2017,10(2):580−592.
    [6] Wang Kai, Li Ningning, Xie Jiayue, et al. Dual confinement of carbon/TiO2 hollow shells enables improved lithium storage of Si nanoparticles[J]. Electrochimica Acta, 2021,372:137863. doi: 10.1016/j.electacta.2021.137863
    [7] Lu Bing, Ma B, Deng X, et al. Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery[J]. Chemical Engineering Journal, 2018,351:269−279. doi: 10.1016/j.cej.2018.06.109
    [8] Jiao X W, Tian Y H, Zhang X J. Hollow Si nanospheres with amorphous TiO2 layer used as anode for high-performance Li-ion battery[J]. Applied Surface Science, 2021,(9):150682.
    [9] Geng H, Ang H, Ding X, et al. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries[J]. Nanoscale, 2016,8(5):2967−2973. doi: 10.1039/C5NR08570E
    [10] Shen D, Huang C, Gan L, et al. Rational design of Si@SiO2/C composite using sustainable cellulose as carbon resource for anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018,10(9):7946−7954.
    [11] Zhou Xiaosi, Yin Yaxia, Wan Lijun, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advanced Energy Materials, 2012,2(9):1086−1090. doi: 10.1002/aenm.201200158
    [12] Jin J, Huang S Z, Shu J, et al. Highly porous TiO2 hollow microspheres constructed by radially oriented nanorods chains for high capacity, high rate and long cycle capability lithium battery[J]. Nano Energy, 2015,16:339−349. doi: 10.1016/j.nanoen.2015.07.001
    [13] Yang T, Tian X, Li X, et al. Preparation of Si-based composite encapsulated by an incomplete multifunction-coating for lithium storage[J]. Electrochimica Acta, 2019,295:75−81. doi: 10.1016/j.electacta.2018.10.142
    [14] Hu J, Wang Q, Fu L, et al. Titanium monoxide-stabilized silicon nanoparticles with a litchi-like structure as an advanced anode for Li-ion batteries[J]. ACS Applied Mater Interfaces, 2020,12(43):48467−48475. doi: 10.1021/acsami.0c10418
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  85
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回