留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钛用于硅负极材料表面包覆改性的研究

王仕伟 郑浩 孟伟巍

王仕伟, 郑浩, 孟伟巍. 二氧化钛用于硅负极材料表面包覆改性的研究[J]. 钢铁钒钛, 2023, 44(5): 93-97. doi: 10.7513/j.issn.1004-7638.2023.05.014
引用本文: 王仕伟, 郑浩, 孟伟巍. 二氧化钛用于硅负极材料表面包覆改性的研究[J]. 钢铁钒钛, 2023, 44(5): 93-97. doi: 10.7513/j.issn.1004-7638.2023.05.014
Wang Shiwei, Zheng Hao, Meng Weiwei. Study on surface coating modification of silicon anode material with titanium dioxide[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 93-97. doi: 10.7513/j.issn.1004-7638.2023.05.014
Citation: Wang Shiwei, Zheng Hao, Meng Weiwei. Study on surface coating modification of silicon anode material with titanium dioxide[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 93-97. doi: 10.7513/j.issn.1004-7638.2023.05.014

二氧化钛用于硅负极材料表面包覆改性的研究

doi: 10.7513/j.issn.1004-7638.2023.05.014
详细信息
    作者简介:

    王仕伟,1997年出生,男,四川巴中人,本科,助理工程师,主要从事储能材料研究,E-mail: 2534763740@qq.com

  • 中图分类号: TF823

Study on surface coating modification of silicon anode material with titanium dioxide

  • 摘要: 以TiCl4为钛源,商用纳米Si为硅源,采用水解法制备了核—壳结构的硅@二氧化钛(Si@TiO2)纳米复合材料。借助XRD、SEM、TEM和电化学性能测试等对材料进行了详细研究。结果显示,坚固的TiO2外壳在充放电过程中极大缓解了硅的体积膨胀,使得Si@TiO2展现出较好的电化学性能,其在1600 mAh/g大电流密度下的放电比容量为614.3 mAh/g。电流密度500 mA/g,循环100次后仍有877 mAh/g的放电比容量,容量保持率为51.8%。
  • 图  1  Si和Si@TiO2纳米复合材料的XRD谱

    Figure  1.  XRD diffraction patterns of Si and Si@TiO2 nanocomposites

    图  2  (a) Si的SEM形貌;(b) Si@TiO2的SEM形貌;(c) Si的TEM形貌;(d) Si@TiO2的TEM形貌

    Figure  2.  (a) SEM image of Si; (b) SEM image of Si@TiO2; (c) TEM image of Si; (d) TEM image of Si@TiO2

    图  3  Si@TiO2纳米复合材料的元素分布

    Figure  3.  EDS analysis of Si@TiO2 nanocomposites

    图  4  Si和Si@TiO2纳米复合材料的电化学性能

    Figure  4.  Electrochemical properties of Si and Si@TiO2 nanocomposites

    表  1  不同钛源制备的硅基复合材料储锂性能比较

    Table  1.   Comparison of lithium storage performance of composite materials prepared from different titanium sources

    材料名称钛源合成方法电流密度/(mA·g−1循环次数/次比容量/(mAh·g−1
    C@TiO2@Si[6]钛酸四丁酯溶胶凝胶10050747
    Si/TiOx[14]钛酸异丙酯水解+碳热还原200200704
    中空Si@TiO2@C[7]钛酸四丁酯溶胶—凝胶10002501270.3
    Si@TiO2(本文)四氯化钛水解法500100877
    下载: 导出CSV
  • [1] Zhang Lei, Wu Haobin, Xu Rong, et al. Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage.[J]. Crystengcomm, 2013,15:9332−9335. doi: 10.1039/c3ce40996a
    [2] Cheng Zhongling, Hu Yi, Wu Keshi, et al. Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries[J]. Electrochimica Acta, 2020,337:135789. doi: 10.1016/j.electacta.2020.135789
    [3] Li Bing, Fei Yao, Jung Jun Bae, et al. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries[J]. Scientific Reports, 2015,5:7659. doi: 10.1038/srep07659
    [4] Zhang Wenhui, Luo Gaixia, Xu Qi, et al. Enhanced reversible lithium storage for nano-Si with a <10 nm homogenous porous carbon coating layer[J]. Electrochimica Acta, 2018,269:1−10. doi: 10.1016/j.electacta.2018.02.143
    [5] Jin Y, Li S, Kushima A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science, 2017,10(2):580−592.
    [6] Wang Kai, Li Ningning, Xie Jiayue, et al. Dual confinement of carbon/TiO2 hollow shells enables improved lithium storage of Si nanoparticles[J]. Electrochimica Acta, 2021,372:137863. doi: 10.1016/j.electacta.2021.137863
    [7] Lu Bing, Ma B, Deng X, et al. Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery[J]. Chemical Engineering Journal, 2018,351:269−279. doi: 10.1016/j.cej.2018.06.109
    [8] Jiao X W, Tian Y H, Zhang X J. Hollow Si nanospheres with amorphous TiO2 layer used as anode for high-performance Li-ion battery[J]. Applied Surface Science, 2021,(9):150682.
    [9] Geng H, Ang H, Ding X, et al. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries[J]. Nanoscale, 2016,8(5):2967−2973. doi: 10.1039/C5NR08570E
    [10] Shen D, Huang C, Gan L, et al. Rational design of Si@SiO2/C composite using sustainable cellulose as carbon resource for anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018,10(9):7946−7954.
    [11] Zhou Xiaosi, Yin Yaxia, Wan Lijun, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advanced Energy Materials, 2012,2(9):1086−1090. doi: 10.1002/aenm.201200158
    [12] Jin J, Huang S Z, Shu J, et al. Highly porous TiO2 hollow microspheres constructed by radially oriented nanorods chains for high capacity, high rate and long cycle capability lithium battery[J]. Nano Energy, 2015,16:339−349. doi: 10.1016/j.nanoen.2015.07.001
    [13] Yang T, Tian X, Li X, et al. Preparation of Si-based composite encapsulated by an incomplete multifunction-coating for lithium storage[J]. Electrochimica Acta, 2019,295:75−81. doi: 10.1016/j.electacta.2018.10.142
    [14] Hu J, Wang Q, Fu L, et al. Titanium monoxide-stabilized silicon nanoparticles with a litchi-like structure as an advanced anode for Li-ion batteries[J]. ACS Applied Mater Interfaces, 2020,12(43):48467−48475. doi: 10.1021/acsami.0c10418
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回