留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含锌粉尘氢还原低碳高值化新路线构建

滕飞 郭培民 朱德庆 龙红明 李凯 王磊 孔令兵

滕飞, 郭培民, 朱德庆, 龙红明, 李凯, 王磊, 孔令兵. 含锌粉尘氢还原低碳高值化新路线构建[J]. 钢铁钒钛, 2023, 44(5): 98-104. doi: 10.7513/j.issn.1004-7638.2023.05.015
引用本文: 滕飞, 郭培民, 朱德庆, 龙红明, 李凯, 王磊, 孔令兵. 含锌粉尘氢还原低碳高值化新路线构建[J]. 钢铁钒钛, 2023, 44(5): 98-104. doi: 10.7513/j.issn.1004-7638.2023.05.015
Teng Fei, Guo Peimin, Zhu Deqing, Long Hongming, Li Kai, Wang Lei, Kong Lingbing. A new low carbon high value route for hydrogen reduction of zinc containing dust[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 98-104. doi: 10.7513/j.issn.1004-7638.2023.05.015
Citation: Teng Fei, Guo Peimin, Zhu Deqing, Long Hongming, Li Kai, Wang Lei, Kong Lingbing. A new low carbon high value route for hydrogen reduction of zinc containing dust[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 98-104. doi: 10.7513/j.issn.1004-7638.2023.05.015

含锌粉尘氢还原低碳高值化新路线构建

doi: 10.7513/j.issn.1004-7638.2023.05.015
基金项目: 国家自然科学基金项目(52104297);山西省科技重大专项计划揭榜挂帅项目(ZDJB08)。
详细信息
    作者简介:

    滕飞,1987年出生,博士研究生,高级工程师,研究方向:烧结、球团,E-mail:13426292269@139.com

    通讯作者:

    郭培民,1975年出生,博士,教授级高工,博士生导师,研究方向:炼铁新技术,E-mail:guopm@pku.org.cn

  • 中图分类号: X757

A new low carbon high value route for hydrogen reduction of zinc containing dust

  • 摘要: 对国内外钢厂的含锌粉尘综合利用理论及技术进行了分析,火法还原工艺基于以煤为载体的高温碳冶金,能耗高、碳排放量大、污染严重是其难以回避的共性问题,同时还带来次氧化锌回收利用产生的能耗高、环境负荷大等新问题。根据团队以往研究经验,并结合目前国内外对低碳冶炼的新要求,提出了含锌粉尘氢还原低碳排放高值化利用技术思路:通过氢还原,将含锌粉尘中的铁和锌、铅、铋等有价金属还原,还原后的锌、铅、铋以气体形态被氢气载体带走,实现金属铁与有色金属的分离,含氢烟气再通过梯级冷凝分离锌、铅等有色金属。同时开展了含锌粉尘制备球团、氢还原理论和试验、含锌蒸汽分离理论分析及金属铁磁选等研究工作,为该技术思路的实施提供了坚实的基础。新技术有望实现钢厂含锌粉尘的低碳化冶炼,同时还可以得到附加值更高的金属锌及其它金属产品。
  • 图  1  回转窑处理含锌粉尘提锌流程

    Figure  1.  Zinc extraction process for treating zinc containing dust in rotary kiln

    图  2  转底炉处理钢厂含锌粉尘流程

    Figure  2.  Treatment of zinc containing dust in steel plant by rotary hearth furnace

    图  3  一种次氧化锌综合利用流程

    Figure  3.  A comprehensive utilization process of secondary zinc oxide

    图  4  钢厂含锌粉尘氢还原低碳高值化新思路

    Figure  4.  New idea of hydrogen reduction of zinc containing dust in steel plant

    图  5  含锌粉尘球团宏观形貌

    Figure  5.  Macromorphology of pellets containing zinc dust

    图  6  H2还原锌氧化物和铁氧化物的平衡气相组成

    Figure  6.  Equilibrium gas phase composition diagram of zinc oxide and iron oxide reduced by H2

    图  8  金属蒸汽与粉尘中氯化物和氟化物的平衡温度与含量关系

    Figure  8.  Relationship between equilibrium temperature and content of metal vapor and chlorides and fluorides

    图  7  氢还原后金属化球团的微观结构

    Figure  7.  Microstructure of metallized pellets after hydrogen reduction

  • [1] Antunano N, Cambra J F, Arias P L. Hydrometallurgical processes for Waelz oxide valorisation - An overview[J]. Process Safety and Environmental Protection, 2019,129:308−320. doi: 10.1016/j.psep.2019.06.028
    [2] She Xuefeng, Xue Qingguo, Wang Jingsong, et al. Comparison of zinc-bearing dust comprehensive utilization and treatment processes in iron and steel plant[J]. Ironmaking, 2010,29(4):56−62. (佘雪峰, 薛庆国, 王静松, 等. 钢铁厂含锌粉尘综合利用及相关处理工艺比较[J]. 炼铁, 2010,29(4):56−62.

    She Xuefeng, Xue Qingguo, Wang Jingsong, et al. Comparison of zinc-bearing dust comprehensive utilization and treatment processes in iron and steel plant [J]. Ironmaking, 2010, 29(4): 56-62.
    [3] Lv W, Gan M, Fan X H, et al. Recycling utilization of zinc-bearing metallurgical dust by reductive sintering: Reaction behavior of zinc oxide[J]. JOM, 2019,71(9):3173−3180. doi: 10.1007/s11837-019-03645-y
    [4] Zhang Shourong, Zhang Weidong. Solid waste resources treatment mode and development tendency of iron and steel enterprises in China[J]. Iron and Steel, 2017,52(4):1−6. (张寿荣, 张卫东. 中国钢铁企业固体废弃物资源化处理模式和发展方向[J]. 钢铁, 2017,52(4):1−6.

    Zhang Shourong, Zhang Weidong. Solid waste resources treatment mode and development tendency of iron and steel enterprises in China [J]. Iron and Steel, 2017, 52(4): 1-6.
    [5] Xu Lejiang. Face the challenge and achieve the transformation from a big steel country to a powerful steel country[J]. China Steel, 2012,(5):7−10. (徐乐江. 直面挑战—实现转型—由钢铁大国走向钢铁强国[J]. 中国钢铁业, 2012,(5):7−10.

    Xu Lejiang. Face the challenge and achieve the transformation from a big steel country to a powerful steel country [J]. China Steel, 2012(5): 7-10.
    [6] Zurner P, Frisch G. Leaching and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent[J]. ACS Sustainable Chemistry & Engineering, 2019,7(5):5300−5308.
    [7] Zhu Yaoping. Practice of recovery indium zinc and bismuth from gas ash from blast furnace[J]. Nonferrous Metals (Extractive Metallurgy), 2009,(6):14−16. (朱耀平. 高炉瓦斯灰中铟锌铋的回收实践[J]. 有色金属(冶炼部分), 2009,(6):14−16.

    Zhu yaoping. Practice of recovery indium zinc and bismuth from gas ash from blast furnace [J]. Nonferrous Metals (Extractive Metallurgy), 2009(6): 14-16.
    [8] 郭培民. 钢厂含锌粉尘处理方式探讨[N]. 世界金属导报, 2017-6-27(B12).

    Guo Peimin. Discussion on disposal of zinc-bearing dust in iron and steel plant[N]. World Metals, 2017-6-27(B12).
    [9] Buzin P J W K, Heck N C, Vilela A C F. EAF dust: An overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes[J]. Journal of Materials Research and Technology, 2017,6(2):194−202. doi: 10.1016/j.jmrt.2016.10.002
    [10] 郭培民, 赵沛, 冶金资源高效利用[M]. 北京: 冶金工业出版社, 2012.

    Guo Peimin, Zhao Pei. Efficient utilization of metallurgical resources [M]. Beijing: Metallurgical Technology Press, 2012.
    [11] Hu Xiaojun, Liu Junbao, Guo Peimin, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO-CO2[J]. Chinese Journal of Engineering, 2015,37(4):429−435. (胡晓军, 刘俊宝, 郭培民, 等. 铁酸锌气体还原的热力学分析[J]. 工程科学学报, 2015,37(4):429−435.

    Hu Xiaojun, Liu Junbao, Guo Peimin, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO-CO2 [J]. Chinese Journal of Engineering, 2015, 37(4): 429-435.
    [12] Zhang H N, Li J L, Xu A J, et al. Carbothermic reduction of zinc and iron oxides in electric arc furnace[J]. Journal of Iron and Steel Research International, 2014,21(4):427−432. doi: 10.1016/S1006-706X(14)60066-2
    [13] Zhu D Q, Li S W, Pan J, et al. Migration and distributions of zinc, lead and arsenic within sinter bed during updraft pre-reductive sintering of iron-bearing wastes[J]. Powder Technology, 2019,342:864−872. doi: 10.1016/j.powtec.2018.10.050
    [14] Lu Hua, Wu Shengli, Zhang Jianliang, et al. Forming dynamics of pellet made frozinc-bearing dust in steel plant[J]. Iron and Steel, 2017,52(5):5−12. (鲁华, 吴胜利, 张建良, 等. 钢厂含铁粉尘动力学成球性能[J]. 钢铁, 2017,52(5):5−12.

    Lu Hua, Wu Shengli, Zhang Jianliang, et al. Forming dynamics of pellet made frozinc-bearing dust in steel plant [J]. Iron and Steel, 2017, 52(5): 5-12.
    [15] Wang Dongyan, Chen Weiqing, Zhou Rongzhang, et al. Basic properties and pellet making process for iron and steel plant Zn-Pb bearing dust[J]. Journal of University of Science and Technology Beijing, 1998,(2):113−116. (王东彦, 陈伟庆, 周荣章, 等. 钢铁厂含锌、铅粉尘基本物性及造球工艺[J]. 北京科技大学学报, 1998,(2):113−116.

    Wang Dongyan, Chen Weiqing, Zhou Rongzhang, et al. Basic properties and pellet making process for iron and steel plant Zn-Pb bearing dust [J]. Journal of University of Science and Technology Beijing, 1998(2): 113-116.
    [16] Wu Y L, Jiang Z Y, Zhang X X, et al. Process optimization of metallurgical dust recycling by direct reduction in rotary hearth furnace[J]. Powder Technology, 2018,326:101−113. doi: 10.1016/j.powtec.2017.12.063
    [17] He Huanyu, Chen Zhenhong, Cui Yifang, et al. Sediment of flus gas in direct reduction treated by zinc-bearing metallurgical dust[J]. Iron and Steel, 2015,50(12):80−84. (何环宇, 陈振红, 崔一芳, 等. 含锌冶金尘泥还原烟气沉积特性[J]. 钢铁, 2015,50(12):80−84.

    He Huanyu, Chen Zhenhong, Cui Yifang, et al. Sediment of flus gas in direct reduction treated by zinc-bearing metallurgical dust [J]. Iron and Steel, 2015, 50(12): 80-84.
    [18] Lin X L, Peng Z W, Yan J X, et al. Pyrometallurgical recycling of electric arc furnace dust[J]. Journal of Cleaner Production, 2017,149:1079−1100. doi: 10.1016/j.jclepro.2017.02.128
    [19] Rieger J, Schenk J. Residual processing in the European steel industry: a technological overview[J]. Journal of Sustainable Metallurgy, 2019,5:295−309. doi: 10.1007/s40831-019-00220-2
    [20] Mager K, Meurer U, Garcia-Egocheaga B, et al. Recovery of zinc oxide from secondary raw materials: new developments of the Waelz process [C]//In: Stewart D L. , et al. (eds), Proceedings of the Fourth International Symposium on Recycling of Metals and Engineered Materials . The Minerals, Metals & Materials Society, 2000 : 329−344.
    [21] Takaya S, Kubota N, Watanabe H, et al. Recent development of EAF dust treating at Shisaka Smelting Co. , Ltd. [C]//In: Siegmund A. , et al. (eds), Pb Zn 2020: 9th International Symposium on Lead and Zinc Processing. The Minerals, Metals & Materials Series, Springer, Cham. 2020: 91−97.
    [22] Holtzer M, Kmita A, Roczniak A. The recycling of materials containing iron and zinc in the oxy cup process[J]. Arch. Foundry Eng, 2015,15:126−130.
    [23] Hillmann C, Sassen K J. Processing of zinc-bearing BOF dusts in a blast furnace[J]. World Steel, 2013,13(5):8−9, 54. (Hillmann C, Sassen K J. 高炉处理转炉含锌粉尘[J]. 世界钢铁, 2013,13(5):8−9, 54.

    Hillmann C , Sassen K J . Processing of zinc-bearing BOF dusts in a blast furnace [J]. World Steel, 2013, 13(5): 8-9;54.
    [24] Pang Jianming, Guo Peimin, Zhao Pei. Practice of new technology of treating blast furnace dust containing zinc and lead with rotary kiln[J]. China Nonferrous Metallurgy, 2013,42(3):19−24. (庞建明, 郭培民, 赵沛. 回转窑处理含锌、铅高炉灰新技术实践[J]. 中国有色冶金, 2013,42(3):19−24.

    Pang Jianming, Guo Peimin, Zhao Pei. Practice of new technology of treating blast furnace dust containing zinc and lead with rotary kiln [J]. China Nonferrous Metallurgy, 2013, 42(3): 19-24.
    [25] Wu Yuliang, Jiang Zeyi, Zhang Xinxin, et al. Numerical simulation of the direct reduction of pellets in a rotary hearth furnace for zinc-containing metallurgical dust treatment[J]. International Journal of Minerals Metallurgy and Materials, 2013,20(7):636−644. doi: 10.1007/s12613-013-0777-5
    [26] Lu Yongsuo, Ning Jianping, Ruan Haifeng, et al. Hydrometallurgical recovery of zinc and removal of chlorine and fluorine from zinc oxide dust[J]. Hydrometallurgy of China, 2016,35(5):422−426. (路永锁, 宁建平, 阮海丰, 等. 从次氧化锌烟尘中湿法回收锌及去除氟氯[J]. 湿法冶金, 2016,35(5):422−426.

    Lu Yongsuo, Ning Jianping, Ruan Haifeng, et al. Hydrometallurgical recovery of zinc and removal of chlorine and fluorine from zinc oxide dust[J]. Hydrometallurgy of China, 2016, 35(5): 422-426.
    [27] Luo Yongguang, Zhang Libo, Peng Jinhui, et al. Status and future trend of fluorine removal in hydrometallurgical process of zinc oxide dust[J]. China Nonferrous Metallurgy, 2013,42(4):39−43. (罗永光, 张利波, 彭金辉, 等. 氧化锌烟尘湿法冶炼过程除氟现状与发展趋势[J]. 中国有色冶金, 2013,42(4):39−43. doi: 10.3969/j.issn.1672-6103.2013.04.011

    Luo Yongguang, Zhang Libo, Peng Jinhui, et al. Status and future trend of fluorine removal in hydrometallurgical process of zinc oxide dust [J]. China Nonferrous metallurgy, 2013, 42(4): 39-43. doi: 10.3969/j.issn.1672-6103.2013.04.011
    [28] Antuñano N, Cambra J F, Arias P L. Fluoride removal from double leached Waelz oxide leach solutions as alternative feeds to zinc calcine leaching liquors in the electrolytic zinc production process[J]. Hydrometallurgy, 2016,161:65−70. doi: 10.1016/j.hydromet.2016.01.008
    [29] Li Z Q, Li J, Zhang L B, et al. Response surface optimization of process parameters for removal of F and Cl from zinc oxide fume by microwave roasting[J]. Trans. Nonferrous Met. Soc. China, 2015,25:973−980. doi: 10.1016/S1003-6326(15)63687-1
    [30] Xu Kuangdi. Low carbon economy and iron and steel industry[J]. Iron and Steel, 2010,45(3):1−9. (徐匡迪. 低碳经济与钢铁工业[J]. 钢铁, 2010,45(3):1−9.

    Xu Kuangdi. Low carbon economy and iron and steel industry [J]. Iron and Steel, 2010, 45(3): 1-9.
    [31] 郭培民, 赵沛. 低温快速冶金理论及技术[M]. 北京: 冶金工业出版社, 2020.

    Guo Peimin, Zhao Pei. Theory and technology for fast metallurgy at low temperature [M]. Beijing: Metallurgical Technology Press, 2020.
  • 加载中
图(8)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  21
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回