中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含锌粉尘氢还原低碳高值化新路线构建

滕飞 郭培民 朱德庆 龙红明 李凯 王磊 孔令兵

滕飞, 郭培民, 朱德庆, 龙红明, 李凯, 王磊, 孔令兵. 含锌粉尘氢还原低碳高值化新路线构建[J]. 钢铁钒钛, 2023, 44(5): 98-104. doi: 10.7513/j.issn.1004-7638.2023.05.015
引用本文: 滕飞, 郭培民, 朱德庆, 龙红明, 李凯, 王磊, 孔令兵. 含锌粉尘氢还原低碳高值化新路线构建[J]. 钢铁钒钛, 2023, 44(5): 98-104. doi: 10.7513/j.issn.1004-7638.2023.05.015
Teng Fei, Guo Peimin, Zhu Deqing, Long Hongming, Li Kai, Wang Lei, Kong Lingbing. A new low carbon high value route for hydrogen reduction of zinc containing dust[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 98-104. doi: 10.7513/j.issn.1004-7638.2023.05.015
Citation: Teng Fei, Guo Peimin, Zhu Deqing, Long Hongming, Li Kai, Wang Lei, Kong Lingbing. A new low carbon high value route for hydrogen reduction of zinc containing dust[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 98-104. doi: 10.7513/j.issn.1004-7638.2023.05.015

含锌粉尘氢还原低碳高值化新路线构建

doi: 10.7513/j.issn.1004-7638.2023.05.015
基金项目: 国家自然科学基金项目(52104297);山西省科技重大专项计划揭榜挂帅项目(ZDJB08)。
详细信息
    作者简介:

    滕飞,1987年出生,博士研究生,高级工程师,研究方向:烧结、球团,E-mail:13426292269@139.com

    通讯作者:

    郭培民,1975年出生,博士,教授级高工,博士生导师,研究方向:炼铁新技术,E-mail:guopm@pku.org.cn

  • 中图分类号: X757

A new low carbon high value route for hydrogen reduction of zinc containing dust

  • 摘要: 对国内外钢厂的含锌粉尘综合利用理论及技术进行了分析,火法还原工艺基于以煤为载体的高温碳冶金,能耗高、碳排放量大、污染严重是其难以回避的共性问题,同时还带来次氧化锌回收利用产生的能耗高、环境负荷大等新问题。根据团队以往研究经验,并结合目前国内外对低碳冶炼的新要求,提出了含锌粉尘氢还原低碳排放高值化利用技术思路:通过氢还原,将含锌粉尘中的铁和锌、铅、铋等有价金属还原,还原后的锌、铅、铋以气体形态被氢气载体带走,实现金属铁与有色金属的分离,含氢烟气再通过梯级冷凝分离锌、铅等有色金属。同时开展了含锌粉尘制备球团、氢还原理论和试验、含锌蒸汽分离理论分析及金属铁磁选等研究工作,为该技术思路的实施提供了坚实的基础。新技术有望实现钢厂含锌粉尘的低碳化冶炼,同时还可以得到附加值更高的金属锌及其它金属产品。
  • 图  1  回转窑处理含锌粉尘提锌流程

    Figure  1.  Zinc extraction process for treating zinc containing dust in rotary kiln

    图  2  转底炉处理钢厂含锌粉尘流程

    Figure  2.  Treatment of zinc containing dust in steel plant by rotary hearth furnace

    图  3  一种次氧化锌综合利用流程

    Figure  3.  A comprehensive utilization process of secondary zinc oxide

    图  4  钢厂含锌粉尘氢还原低碳高值化新思路

    Figure  4.  New idea of hydrogen reduction of zinc containing dust in steel plant

    图  5  含锌粉尘球团宏观形貌

    Figure  5.  Macromorphology of pellets containing zinc dust

    图  6  H2还原锌氧化物和铁氧化物的平衡气相组成

    Figure  6.  Equilibrium gas phase composition diagram of zinc oxide and iron oxide reduced by H2

    图  8  金属蒸汽与粉尘中氯化物和氟化物的平衡温度与含量关系

    Figure  8.  Relationship between equilibrium temperature and content of metal vapor and chlorides and fluorides

    图  7  氢还原后金属化球团的微观结构

    Figure  7.  Microstructure of metallized pellets after hydrogen reduction

  • [1] Antunano N, Cambra J F, Arias P L. Hydrometallurgical processes for Waelz oxide valorisation - An overview[J]. Process Safety and Environmental Protection, 2019,129:308−320. doi: 10.1016/j.psep.2019.06.028
    [2] She Xuefeng, Xue Qingguo, Wang Jingsong, et al. Comparison of zinc-bearing dust comprehensive utilization and treatment processes in iron and steel plant[J]. Ironmaking, 2010,29(4):56−62. (佘雪峰, 薛庆国, 王静松, 等. 钢铁厂含锌粉尘综合利用及相关处理工艺比较[J]. 炼铁, 2010,29(4):56−62.

    She Xuefeng, Xue Qingguo, Wang Jingsong, et al. Comparison of zinc-bearing dust comprehensive utilization and treatment processes in iron and steel plant [J]. Ironmaking, 2010, 29(4): 56-62.
    [3] Lv W, Gan M, Fan X H, et al. Recycling utilization of zinc-bearing metallurgical dust by reductive sintering: Reaction behavior of zinc oxide[J]. JOM, 2019,71(9):3173−3180. doi: 10.1007/s11837-019-03645-y
    [4] Zhang Shourong, Zhang Weidong. Solid waste resources treatment mode and development tendency of iron and steel enterprises in China[J]. Iron and Steel, 2017,52(4):1−6. (张寿荣, 张卫东. 中国钢铁企业固体废弃物资源化处理模式和发展方向[J]. 钢铁, 2017,52(4):1−6.

    Zhang Shourong, Zhang Weidong. Solid waste resources treatment mode and development tendency of iron and steel enterprises in China [J]. Iron and Steel, 2017, 52(4): 1-6.
    [5] Xu Lejiang. Face the challenge and achieve the transformation from a big steel country to a powerful steel country[J]. China Steel, 2012,(5):7−10. (徐乐江. 直面挑战—实现转型—由钢铁大国走向钢铁强国[J]. 中国钢铁业, 2012,(5):7−10.

    Xu Lejiang. Face the challenge and achieve the transformation from a big steel country to a powerful steel country [J]. China Steel, 2012(5): 7-10.
    [6] Zurner P, Frisch G. Leaching and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent[J]. ACS Sustainable Chemistry & Engineering, 2019,7(5):5300−5308.
    [7] Zhu Yaoping. Practice of recovery indium zinc and bismuth from gas ash from blast furnace[J]. Nonferrous Metals (Extractive Metallurgy), 2009,(6):14−16. (朱耀平. 高炉瓦斯灰中铟锌铋的回收实践[J]. 有色金属(冶炼部分), 2009,(6):14−16.

    Zhu yaoping. Practice of recovery indium zinc and bismuth from gas ash from blast furnace [J]. Nonferrous Metals (Extractive Metallurgy), 2009(6): 14-16.
    [8] 郭培民. 钢厂含锌粉尘处理方式探讨[N]. 世界金属导报, 2017-6-27(B12).

    Guo Peimin. Discussion on disposal of zinc-bearing dust in iron and steel plant[N]. World Metals, 2017-6-27(B12).
    [9] Buzin P J W K, Heck N C, Vilela A C F. EAF dust: An overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes[J]. Journal of Materials Research and Technology, 2017,6(2):194−202. doi: 10.1016/j.jmrt.2016.10.002
    [10] 郭培民, 赵沛, 冶金资源高效利用[M]. 北京: 冶金工业出版社, 2012.

    Guo Peimin, Zhao Pei. Efficient utilization of metallurgical resources [M]. Beijing: Metallurgical Technology Press, 2012.
    [11] Hu Xiaojun, Liu Junbao, Guo Peimin, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO-CO2[J]. Chinese Journal of Engineering, 2015,37(4):429−435. (胡晓军, 刘俊宝, 郭培民, 等. 铁酸锌气体还原的热力学分析[J]. 工程科学学报, 2015,37(4):429−435.

    Hu Xiaojun, Liu Junbao, Guo Peimin, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO-CO2 [J]. Chinese Journal of Engineering, 2015, 37(4): 429-435.
    [12] Zhang H N, Li J L, Xu A J, et al. Carbothermic reduction of zinc and iron oxides in electric arc furnace[J]. Journal of Iron and Steel Research International, 2014,21(4):427−432. doi: 10.1016/S1006-706X(14)60066-2
    [13] Zhu D Q, Li S W, Pan J, et al. Migration and distributions of zinc, lead and arsenic within sinter bed during updraft pre-reductive sintering of iron-bearing wastes[J]. Powder Technology, 2019,342:864−872. doi: 10.1016/j.powtec.2018.10.050
    [14] Lu Hua, Wu Shengli, Zhang Jianliang, et al. Forming dynamics of pellet made frozinc-bearing dust in steel plant[J]. Iron and Steel, 2017,52(5):5−12. (鲁华, 吴胜利, 张建良, 等. 钢厂含铁粉尘动力学成球性能[J]. 钢铁, 2017,52(5):5−12.

    Lu Hua, Wu Shengli, Zhang Jianliang, et al. Forming dynamics of pellet made frozinc-bearing dust in steel plant [J]. Iron and Steel, 2017, 52(5): 5-12.
    [15] Wang Dongyan, Chen Weiqing, Zhou Rongzhang, et al. Basic properties and pellet making process for iron and steel plant Zn-Pb bearing dust[J]. Journal of University of Science and Technology Beijing, 1998,(2):113−116. (王东彦, 陈伟庆, 周荣章, 等. 钢铁厂含锌、铅粉尘基本物性及造球工艺[J]. 北京科技大学学报, 1998,(2):113−116.

    Wang Dongyan, Chen Weiqing, Zhou Rongzhang, et al. Basic properties and pellet making process for iron and steel plant Zn-Pb bearing dust [J]. Journal of University of Science and Technology Beijing, 1998(2): 113-116.
    [16] Wu Y L, Jiang Z Y, Zhang X X, et al. Process optimization of metallurgical dust recycling by direct reduction in rotary hearth furnace[J]. Powder Technology, 2018,326:101−113. doi: 10.1016/j.powtec.2017.12.063
    [17] He Huanyu, Chen Zhenhong, Cui Yifang, et al. Sediment of flus gas in direct reduction treated by zinc-bearing metallurgical dust[J]. Iron and Steel, 2015,50(12):80−84. (何环宇, 陈振红, 崔一芳, 等. 含锌冶金尘泥还原烟气沉积特性[J]. 钢铁, 2015,50(12):80−84.

    He Huanyu, Chen Zhenhong, Cui Yifang, et al. Sediment of flus gas in direct reduction treated by zinc-bearing metallurgical dust [J]. Iron and Steel, 2015, 50(12): 80-84.
    [18] Lin X L, Peng Z W, Yan J X, et al. Pyrometallurgical recycling of electric arc furnace dust[J]. Journal of Cleaner Production, 2017,149:1079−1100. doi: 10.1016/j.jclepro.2017.02.128
    [19] Rieger J, Schenk J. Residual processing in the European steel industry: a technological overview[J]. Journal of Sustainable Metallurgy, 2019,5:295−309. doi: 10.1007/s40831-019-00220-2
    [20] Mager K, Meurer U, Garcia-Egocheaga B, et al. Recovery of zinc oxide from secondary raw materials: new developments of the Waelz process [C]//In: Stewart D L. , et al. (eds), Proceedings of the Fourth International Symposium on Recycling of Metals and Engineered Materials . The Minerals, Metals & Materials Society, 2000 : 329−344.
    [21] Takaya S, Kubota N, Watanabe H, et al. Recent development of EAF dust treating at Shisaka Smelting Co. , Ltd. [C]//In: Siegmund A. , et al. (eds), Pb Zn 2020: 9th International Symposium on Lead and Zinc Processing. The Minerals, Metals & Materials Series, Springer, Cham. 2020: 91−97.
    [22] Holtzer M, Kmita A, Roczniak A. The recycling of materials containing iron and zinc in the oxy cup process[J]. Arch. Foundry Eng, 2015,15:126−130.
    [23] Hillmann C, Sassen K J. Processing of zinc-bearing BOF dusts in a blast furnace[J]. World Steel, 2013,13(5):8−9, 54. (Hillmann C, Sassen K J. 高炉处理转炉含锌粉尘[J]. 世界钢铁, 2013,13(5):8−9, 54.

    Hillmann C , Sassen K J . Processing of zinc-bearing BOF dusts in a blast furnace [J]. World Steel, 2013, 13(5): 8-9;54.
    [24] Pang Jianming, Guo Peimin, Zhao Pei. Practice of new technology of treating blast furnace dust containing zinc and lead with rotary kiln[J]. China Nonferrous Metallurgy, 2013,42(3):19−24. (庞建明, 郭培民, 赵沛. 回转窑处理含锌、铅高炉灰新技术实践[J]. 中国有色冶金, 2013,42(3):19−24.

    Pang Jianming, Guo Peimin, Zhao Pei. Practice of new technology of treating blast furnace dust containing zinc and lead with rotary kiln [J]. China Nonferrous Metallurgy, 2013, 42(3): 19-24.
    [25] Wu Yuliang, Jiang Zeyi, Zhang Xinxin, et al. Numerical simulation of the direct reduction of pellets in a rotary hearth furnace for zinc-containing metallurgical dust treatment[J]. International Journal of Minerals Metallurgy and Materials, 2013,20(7):636−644. doi: 10.1007/s12613-013-0777-5
    [26] Lu Yongsuo, Ning Jianping, Ruan Haifeng, et al. Hydrometallurgical recovery of zinc and removal of chlorine and fluorine from zinc oxide dust[J]. Hydrometallurgy of China, 2016,35(5):422−426. (路永锁, 宁建平, 阮海丰, 等. 从次氧化锌烟尘中湿法回收锌及去除氟氯[J]. 湿法冶金, 2016,35(5):422−426.

    Lu Yongsuo, Ning Jianping, Ruan Haifeng, et al. Hydrometallurgical recovery of zinc and removal of chlorine and fluorine from zinc oxide dust[J]. Hydrometallurgy of China, 2016, 35(5): 422-426.
    [27] Luo Yongguang, Zhang Libo, Peng Jinhui, et al. Status and future trend of fluorine removal in hydrometallurgical process of zinc oxide dust[J]. China Nonferrous Metallurgy, 2013,42(4):39−43. (罗永光, 张利波, 彭金辉, 等. 氧化锌烟尘湿法冶炼过程除氟现状与发展趋势[J]. 中国有色冶金, 2013,42(4):39−43. doi: 10.3969/j.issn.1672-6103.2013.04.011

    Luo Yongguang, Zhang Libo, Peng Jinhui, et al. Status and future trend of fluorine removal in hydrometallurgical process of zinc oxide dust [J]. China Nonferrous metallurgy, 2013, 42(4): 39-43. doi: 10.3969/j.issn.1672-6103.2013.04.011
    [28] Antuñano N, Cambra J F, Arias P L. Fluoride removal from double leached Waelz oxide leach solutions as alternative feeds to zinc calcine leaching liquors in the electrolytic zinc production process[J]. Hydrometallurgy, 2016,161:65−70. doi: 10.1016/j.hydromet.2016.01.008
    [29] Li Z Q, Li J, Zhang L B, et al. Response surface optimization of process parameters for removal of F and Cl from zinc oxide fume by microwave roasting[J]. Trans. Nonferrous Met. Soc. China, 2015,25:973−980. doi: 10.1016/S1003-6326(15)63687-1
    [30] Xu Kuangdi. Low carbon economy and iron and steel industry[J]. Iron and Steel, 2010,45(3):1−9. (徐匡迪. 低碳经济与钢铁工业[J]. 钢铁, 2010,45(3):1−9.

    Xu Kuangdi. Low carbon economy and iron and steel industry [J]. Iron and Steel, 2010, 45(3): 1-9.
    [31] 郭培民, 赵沛. 低温快速冶金理论及技术[M]. 北京: 冶金工业出版社, 2020.

    Guo Peimin, Zhao Pei. Theory and technology for fast metallurgy at low temperature [M]. Beijing: Metallurgical Technology Press, 2020.
  • 加载中
图(8)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  71
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回