留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

攀西某钒钛铁精矿提质降杂试验研究

李硕 陈福林 蔡先炎 黄立雨 王志杰 吴宁 黄延

李硕, 陈福林, 蔡先炎, 黄立雨, 王志杰, 吴宁, 黄延. 攀西某钒钛铁精矿提质降杂试验研究[J]. 钢铁钒钛, 2023, 44(5): 105-110. doi: 10.7513/j.issn.1004-7638.2023.05.016
引用本文: 李硕, 陈福林, 蔡先炎, 黄立雨, 王志杰, 吴宁, 黄延. 攀西某钒钛铁精矿提质降杂试验研究[J]. 钢铁钒钛, 2023, 44(5): 105-110. doi: 10.7513/j.issn.1004-7638.2023.05.016
Li Shuo, Chen Fulin, Cai Xianyan, Huang Liyu, Wang Zhijie, Wu Ning, Huang Yan. Experimental study on quality improvement and impurity reduction of a vanadium-titanium iron concentrate in Panxi[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 105-110. doi: 10.7513/j.issn.1004-7638.2023.05.016
Citation: Li Shuo, Chen Fulin, Cai Xianyan, Huang Liyu, Wang Zhijie, Wu Ning, Huang Yan. Experimental study on quality improvement and impurity reduction of a vanadium-titanium iron concentrate in Panxi[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 105-110. doi: 10.7513/j.issn.1004-7638.2023.05.016

攀西某钒钛铁精矿提质降杂试验研究

doi: 10.7513/j.issn.1004-7638.2023.05.016
基金项目: 攀枝花市科技计划项目(2021 CY-G-8)。
详细信息
    作者简介:

    李硕,1992年出生,男,四川攀枝花人,硕士,工程师,主要从事矿产资源综合利用及钒钛磁铁矿选矿领域科研工作,E-mail:lishuo0903@163.com

    通讯作者:

    陈福林,1982年出生,男,四川巴中人,硕士,高级工程师,主要从事矿产资源综合利用及钒钛磁铁矿选矿领域的科研工作,E-mail:277454853@qq.com

  • 中图分类号: TD951

Experimental study on quality improvement and impurity reduction of a vanadium-titanium iron concentrate in Panxi

  • 摘要: 攀西某钒钛铁精矿TFe为55.88%,主要杂质元素化学成分为TiO2、SiO2、Al2O3、MgO、CaO,粒状钛铁矿及脉石矿物等杂质组分占比达14.26%,钛铁矿主要以客晶形式嵌布于钛磁铁矿基底中,粗、细粒铁精矿中杂质组分及嵌布特征差异显著。针对该样品,在实验室开展了“预先分级—粗粒再磨磁选”“预先分级—粗粒再磨磁选—细粒磁选”“深度磁选—分级—粗粒再磨磁选”3种工艺对比试验,以及电磁湿法鼓式磁选机、高频谐波磁选机、磁选柱3种磁选设备对比试验,并对提质前后铁精矿的主要化学成分及矿物组分进行了对比分析。研究表明,以电磁湿法鼓式磁选机为选别设备,采用“预先分级(0.074 mm)-粗粒再磨(−0.074 mm占96.50%)磁选—细粒直接磁选”工艺的提质效果最优,该钒钛铁精矿经提质后TFe提升3.36个百分点,杂质组分占比累计降低了6.92个百分点,TFe/TiO2提高了3.44个百分点。
  • 图  1  矿物嵌布特征照片

    1-钛磁铁矿;2-脉石;3-磁黄铁矿

    Figure  1.  Photographs of mineral embedding characteristics

    图  2  “预先分级—粗粒再磨磁选”工艺流程

    Figure  2.  "Preliminary classification-coarse grain grinding magnetic separation" process

    图  3  “预先分级—粗粒再磨磁选—细粒磁选”工艺流程

    Figure  3.  "Preliminary classification-coarse grain grinding magnetic separation-fine magnetic separation" process

    图  4  “深度磁选—分级—粗粒再磨磁选”工艺流程

    Figure  4.  "Deep magnetic separation-classification-coarse particle grinding magnetic separation" process

    表  1  矿样主要化学成分分析结果

    Table  1.   Chemical composition analysis results of the sample %

    TFeFeOTiO2V2O5CoSCuNi
    55.8832.899.680.7150.0170.470.0290.021
    SiO2Al2O3CaOMgOMnNa2OK2O
    4.013.600.533.180.3040.0780.018
    下载: 导出CSV

    表  2  矿物组成及含量

    Table  2.   The mineral composition and contents of the sample %

    钛磁铁矿磁黄铁矿粒状钛铁矿绿泥石蛇纹石镁铝尖晶石
    84.411.331.353.543.471.47
    钙长石榍石透闪石—阳起石钠长石其它脉石合计
    1.440.510.440.371.67100.00
    下载: 导出CSV

    表  3  矿样粒度分析及主要化学成分沿粒度分布规律

    Table  3.   Particle size analysis and distribution of main chemical components along particle size

    粒级/mm产率/%品位/%
    TFeTiO2V2O5SSiO2Al2O3MgO
    +0.251.9334.256.650.3620.44422.147.1810.86
    −0.25~+0.155.7846.068.960.5620.48411.055.096.88
    −0.15~+0.108.4851.509.780.6380.4797.024.515.09
    −0.10~+0.0749.8954.6910.130.6960.4764.584.053.89
    −0.074~+0.04316.5256.5010.260.7210.4853.143.673.07
    −0.043~+0.0386.9657.5010.140.7340.4922.673.562.83
    −0.03850.4458.389.520.7310.4762.233.202.35
    合计100.0055.889.680.7010.4783.943.683.31
    下载: 导出CSV

    表  4  提质工艺试验结果

    Table  4.   The results of improving processes test

    工艺流程产品名称产率/%TFe品位/%TFe回收率/%
    预先分级—粗粒
    再磨磁选
    铁精矿120.6859.0021.85
    铁精矿273.9257.8876.64
    混合铁精矿94.6058.1398.49
    尾 矿5.4015.621.51
    原 矿100.0055.83100.00
    预先分级—粗粒再磨
    磁选—细粒磁选
    铁精矿120.6859.0021.83
    铁精矿271.4259.3175.80
    混合铁精矿92.1059.2497.63
    尾矿15.4015.621.51
    尾矿22.2721.170.86
    尾矿合计7.6717.272.37
    原 矿100.0055.88100.00
    深度磁选—分级—粗粒
    再磨磁选
    铁精矿119.1559.1220.27
    铁精矿274.2658.5077.80
    混合铁精矿93.4158.6398.07
    尾矿11.3419.500.47
    尾矿25.2515.531.46
    尾矿合计6.5916.351.93
    原 矿100.0055.84100.00
    下载: 导出CSV

    表  5  磁选设备种类试验结果

    Table  5.   The results of magnetic separation equipment type tests

    磁选设备
    种类
    产品名称产率/%品位/%回收率/%
    TFeTiO2TFeTiO2
    电磁湿法鼓式
    磁选机
    铁精矿120.6859.0010.1521.8321.81
    铁精矿271.4259.319.7875.8072.58
    混合铁精矿92.1059.249.8697.6394.39
    尾矿15.4015.626.531.513.66
    尾矿22.2721.178.250.861.95
    尾矿合计7.6717.277.042.375.61
    原 矿100.0055.889.62100.00100.00
    高频谐波
    磁选机
    铁精矿120.7059.0710.1721.8821.88
    铁精矿271.3559.229.7475.6172.23
    混合铁精矿92.0559.199.8497.4994.10
    尾矿15.3215.256.621.453.66
    尾矿22.6322.388.181.052.24
    尾矿合计7.9517.617.142.515.90
    原 矿100.0055.889.62100.00100.00
    磁选柱铁精矿121.0158.6910.1222.0621.97
    铁精矿271.1759.059.8175.1872.13
    混合铁精矿92.1858.979.8897.2494.09
    尾矿15.4417.886.871.743.86
    尾矿22.3824.008.331.022.05
    尾矿合计7.8219.747.312.765.91
    原 矿100.0055.909.68100.00100.00
    下载: 导出CSV

    表  6  提质前后铁精矿主要化学成分变化

    Table  6.   Changes of main chemical compositions of iron concentrate before and after improving quality %

    TFeTiO2V2O5SSiO2CaOMgOAl2O3Na2OK2OTFe/TiO2
    原 矿55.889.620.7150.474.010.533.183.600.0780.0185.81
    混合铁精矿59.249.860.7430.371.840.252.183.230.0360.0096.01
    差值(百分点)+3.36+0.24+0.028−0.10−2.17−0.28−1.00−0.37−0.042−0.009+0.20
    下载: 导出CSV

    表  7  提质前后铁精矿主要矿物成分变化

    Table  7.   Changes of main mineral compositions of iron concentrate before and after improving quality %

    钛磁铁矿磁黄铁矿粒状钛铁矿绿泥石蛇纹石镁铝尖晶石钙长石榍石透闪石—阳起石钠长石其他
    原 矿84.411.331.353.543.471.471.440.510.440.371.67
    混合铁精矿91.541.140.721.632.090.790.630.280.210.180.79
    差值(百分点)+7.13−0.19−0.63−1.91−1.38−0.68−0.81−0.23−0.23−0.19−0.88
    下载: 导出CSV
  • [1] 黑色金属矿产资源强国战略研究专题组. 黑色金属矿产资源强国战略研究[M]. 北京: 科学出版社, 2019.

    Special Research Group on the Strategy of Strengthening the Country with Ferrous Metal Mineral Resources. Research on the strategy of strengthening the country with ferrous metal mineral resources[M]. Beijing: Science Press, 2019.
    [2] 马华麟. 现代铁矿石选矿[M]. 合肥: 中国科学技术大学出版社, 2009.

    Ma Hualing. Modern mineral processing of iron ores[M]. Hefei: China University of science and Technology Press, 2009.
    [3] Chen Fulin, Yang Xiaojun, Yang Daoguang, et al. Research on process mineralogy for a low-grade vanadium titano-magnetite in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2020,(6):64−68. (陈福林, 杨晓军, 杨道广, 等. 甘肃某低品位钒钛磁铁矿工艺矿物学研究[J]. 矿产综合利用, 2020,(6):64−68.

    Chen Fulin, Yang Xiaojun, Yang Daoguang, et al. Research on process mineralogy for a low-grade vanadium titano-magnetite in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 64-68.
    [4] Chen Fulin, Yang Xiaojun, Cai Xianyan, et al. Experimental study on iron separation of Baima gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020,(6):26−30. (陈福林, 杨晓军, 蔡先炎, 等. 攀西地区白马辉长岩型超低品位钒钛磁铁矿选铁试验研究[J]. 矿产综合利用, 2020,(6):26−30.

    Chen Fulin, Yang Xiaojun, Cai Xianyan, et al. Experimental study on iron separation of Baima gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 26-30.
    [5] 杜鹤桂. 高炉冶炼钒钛磁铁矿原理[M]. 北京: 科学出版社, 1996.

    Du Hegui. Principle of blast furnace smelting vanadium titanium magnetite[M]. Beijing: Science Press, 1996.
    [6] Ma Jiayuan, Sun Xiwen, Sheng Shixiong. Strengthening of blast furnace smelting of vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2000,35(1):1−12. (马家源, 孙希文, 盛世雄. 钒钛磁铁矿高炉冶炼的强化[J]. 钢铁钒钛, 2000,35(1):1−12.

    Ma Jiayuan, Sun Xiwen, Sheng Shixiong. Strengthening of blast furnace smelting of vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2000, 35(1): 1-12.
    [7] 吕亚男. 钒钛磁铁矿固态还原剂高效利用研究[D]. 长沙: 中南大学, 2009.

    Lv Yanan. Study on efficient utilization of vanadium-titanium magnetite solid reducing agent[D]. Changsha : Central South University, 2009.
    [8] Rao Jiating, Wang Dunxun, Kang Bin, et al. Current situation and proposals of low cost iron-making of Pangang[J]. Sichuan Metallurgy, 2013,35(1):7−13. (饶家庭, 王敦旭, 康斌, 等. 攀钢低成本炼铁技术现状与建议[J]. 四川冶金, 2013,35(1):7−13.

    Rao Jiating, Wang Dunxun, Kang Bin, et al.Current situation and proposals of low cost iron-making of Pangang[J]. Sichuan Metallurgy, 2013, 35(1): 7-13.
    [9] Chen Chao, Zhang Yushu, Li Xiaoyu, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021,(3):99−105. (陈超, 张裕书, 李潇雨, 等. 钛磁铁矿选矿技术研究进展[J]. 矿产综合利用, 2021,(3):99−105.

    Chen Chao, Zhang Yushu, Li Xiaoyu, et al.Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 99-105.
    [10] Wu Xuehong. Experimental study on improving TFe grade of iron concentrate in Midi concentrator[J]. Mining and Metallurgial Engineering, 2013,33(6):38−41. (吴雪红. 提高密地选矿厂铁精矿品位的试验研究[J]. 矿冶工程, 2013,33(6):38−41.

    Wu Xuehong. Experimental study on improving TFe grade of iron concentrate in Midi concentrator[J]. Mining and Metallurgial Engineering, 2013, 33(6): 38-41.
    [11] Chen Chao, Zhang Yushu, Zhang Shaoxiang, et al. Improving quality of Panzhihua iron concentrate by magnetic separation[J]. Conservation and Utilization of Mineral Resources, 2018,(2):69−73,79. (陈超, 张裕书, 张少翔, 等. 攀枝花铁精矿磁选提铁降杂工艺研究[J]. 矿产保护与利用, 2018,(2):69−73,79.

    Chen Chao, Zhang Yushu, Zhang Shaoxiang, et al. Improving quality of Panzhihua iron concentrate by magnetic separation[J]. Conservation and Utilization of Mineral Resources, 2018(2): 69-73, 79.
    [12] Chen Chao, Zhang Yushu, Zhang Shaoxiang, et al. Characteristics of Panzhihua iron concentrate and experimental study on lifting iron and reducing impurities[J]. Comprehensive Utilization of Mineral Resources, 2018,(3):57−60. (陈超, 张裕书, 张少祥, 等. 攀枝花铁精矿特性及提铁降杂试验研究[J]. 矿产综合利用, 2018,(3):57−60.

    Chen Chao, Zhang Yushu, Zhang Shaoxiang, et al. Characteristics of Panzhihua iron concentrate and experimental study on lifting iron and reducing impurities[J]. Comprehensive Utilization of Mineral Resources, 2018(3): 57-60.
    [13] Xie Meifang, Wen Shuming, Zheng Hailei, et al. Experimental study on iron improyement and desulphrization of vanadium-titanium magnetite concentrate[J]. Metal Mine, 2010,(7):44−46,82. (谢美芳, 文书明, 郑海雷, 等. 钒钛磁铁矿精矿提铁降硫工艺试验研究[J]. 金属矿山, 2010,(7):44−46,82.

    Xie Meifang, Wen Shuming, Zheng Hailei, et al. Experimental study on iron improyement and desulphrization of vanadium-titanium magnetite concentrate[J]. Metal Mine, 2010(7): 44-46, 82.
    [14] Liu Zhixiong. Research and industrial practice on improving quality and reducing impurities of Baima vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2022,43(3):104−110. (刘志雄. 白马钒钛磁铁矿提质降杂研究及工业实践[J]. 钢铁钒钛, 2022,43(3):104−110.

    Liu Zhixiong. Research and industrial practice on improving quality and reducing impurities of Baima vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 104-110.
    [15] Li Guoping, Zhao Hailiang, Shang Hongliang, et al. Application of the SXCT wet type high frequency harmonic magnetic separator in the separation of Panxi V-Ti magnetite[J]. Non Ferrous Metals (Beneficiation Part), 2019,(1):95−99. (李国平, 赵海亮, 尚红亮, 等. SXCT型湿式高频谐波磁场磁选机在攀西钒钛磁铁矿中的应用[J]. 有色金属:选矿部分, 2019,(1):95−99.

    Li Guoping, Zhao Hailiang, Shang Hongliang, et al. Application of the SXCT wet type high frequency harmonic magnetic separator in the separation of Panxi V-Ti magnetite[J]. Non Ferrous Metals (Beneficiation Part), 2019(1): 95-99.
    [16] Chi Dongrui, Gu Pan, Yan Weiping, et al. Study on quality improvement and impurities reduction new technology of vanadium-iron concentrate in Hongge[J]. Comprehensive Utilization of Mineral Resources, 2020,(6):91−95. (池冬瑞, 顾畔, 严伟平, 等. 红格钒铁精矿提质降杂新技术研究[J]. 矿产综合利用, 2020,(6):91−95.

    Chi Dongrui, Gu Pan, Yan Weiming, et al. Study on quality improvement and impurities reduction new technology of vanadium-iron concentrate in Hongge[J]. Comprehensive Utilization of Mineral Resources, 2020(6): 91-95.
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  20
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回