Experimental study on phosphorus flotation of an iron tailings in northern China
-
摘要: 北方某选铁尾矿含P2O5 2.93%,多数为晶质磷灰石,属于低品位磷资源。为了实现铁尾矿中磷的高效回收,针对其性质特点,进行了浮磷试验研究,并分析了主要因素的影响。最终,在最佳条件下(以氧化石蜡皂为捕收剂,用量为1200 g/t;碳酸钠为pH调整剂,用量为2 000 g/t;水玻璃为抑制剂,用量为200 g/t)采用“一粗—三精”的大开路小闭路流程,获得了理想的技术指标,磷精矿含P2O5达33.19%、回收率达82.98%。Abstract: An iron tailings in the northern China contains 2.93% P2O5, most of which is crystalline apatite and belongs to low-grade phosphorus resources. In order to realize the efficient recovery of phosphorus in the iron tailings, the experimental study on phosphorus flotation was carried out according to its characteristics, and the influence of main factors was emphatically analyzed. Finally, the optimal conditions were obtained using oxidized paraffin soap as the collector with the amount of 1200 g/t, sodium carbonate as the pH adjusting agent with a dosage of 2000 g/t and water glass as the inhibitor with the amount of 200 g/t. The ideal technical index was obtained with the P2O5 content of 33.19% in the phosphate concentrate and the recovery rate of 82.98% under the large open and small closed circuit process with "one coarse-three fine".
-
Key words:
- iron tailings /
- apatite /
- flotation /
- comprehensive recovery
-
表 1 原矿多元素分析结果
Table 1. Results of multi-element analysis of raw ore
% TFe SiO2 Al2O3 CaO MgO S P2O5 TiO2 V2O5 12.17 43.45 13.46 8.39 5.04 0.421 2.93 2.31 0.053 表 2 原矿粒度分析结果
Table 2. Particle size analysis result of raw ore
% 粒级/mm 产率/% P2O5品位/% P2O5分布率/% 个别 平均 个别 累计 +0.25 16.29 1.51 8.91 +0.15 ~ –0.25 11.15 1.87 0.45 7.55 16.46 +0.075 ~ –0.15 23.54 2.28 0.99 19.45 35.91 +0.045 ~ –0.075 12.97 2.71 1.34 12.74 48.65 –0.045 36.05 4.38 2.92 51.35 100.00 表 3 一粗–一扫–三精全闭路试验结果
Table 3. One rough-one sweep-three fine full closed circuit test results
产品名称 产率/% P2O5品位/% P2O5回收率/% 个别 平均 个别 累计 精矿 7.90 31.09 85.56 尾矿 92.10 0.45 2.87 14.44 100 表 4 大开路式闭路(一粗–三精)试验结果
Table 4. Open-circuit closed-circuit ( one rough-three fine ) test results
产品
名称产率/% P2O5品位/% P2O5回收率/% 个别 累计 个别 平均 个别 累计 精矿 6.90 33.19 82.98 精Ⅰ尾矿 5.58 12.48 0.73 2.33 1.48 84.46 粗选尾矿 87.52 100 0.49 2.76 15.54 100 -
[1] Zhang Hao. Phosphorus concentration test of iron tailing of Chengde Jinying mining Co., Ltd.[J]. Modern Mining, 2021,37(10):133−134. (张浩. 承德金盈矿业有限公司选铁尾矿选磷试验[J]. 现代矿业, 2021,37(10):133−134. doi: 10.3969/j.issn.1674-6082.2021.10.036Zhang Hao. Phosphorus concentration test of iron tailing of Chengde Jinying mining Co. , Ltd. [J]. Modern Mining, 2021, 37(10): 133-134 doi: 10.3969/j.issn.1674-6082.2021.10.036 [2] Zhang Jin, Ge Yingyong, Cai Xinwei, et al. Recovery of low-grade phosphate from phosphorus iron ore[J]. Mining and Metallurgical Engineering, 2016,36(2):32−34, 37. (张晋, 葛英勇, 蔡新伟, 等. 含磷铁矿中低品位磷的回收研究[J]. 矿冶工程, 2016,36(2):32−34, 37. doi: 10.3969/j.issn.0253-6099.2016.02.008Zhang Jin, Ge Yingyong, Cai Xinwei, et al. Recovery of low-grade phosphate from phosphorus iron ore[J]. Mining and Metallurgical Engineering, 2016, 36(2): 32-34, 37 doi: 10.3969/j.issn.0253-6099.2016.02.008 [3] Han Jikang, Liang Bing, Li Guofeng, et al. Preparability test of a phosphorus-bearing iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020,(2):49−54. (韩继康, 梁冰, 李国峰, 等. 某含磷铁矿的可选性试验研究[J]. 矿产综合利用, 2020,(2):49−54.Han Jikang, Liang Bing, Li Guofeng, et al. Preparability test of a phosphorus-bearing iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 49-54 [4] Ding Xiaojiang, Wu Yanni. Comprehensive recovery research for low grade iron-phosphate ore of north China[J]. Geology of Chemical Minerals, 2021,43(2):165−169. (丁晓姜, 吴艳妮. 北方低品位磷铁矿综合回收研究[J]. 化工矿产地质, 2021,43(2):165−169. doi: 10.3969/j.issn.1006-5296.2021.02.010Ding Xiaojiang, Wu Yanni. Comprehensive recovery research for low grade iron-phosphate ore of north China[J]. Geology of Chemical Minerals, 2021, 43(2): 165-169 doi: 10.3969/j.issn.1006-5296.2021.02.010 [5] Wang Yang, Tang Min, Huang Songwei, et al. Flotation recovery of phosphorous from with combined colecters from an iron tailings in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2022,42(2):80−84. (汪洋, 唐敏, 黄宋魏, 等. 组合捕收剂浮选回收云南某铁尾矿中的磷[J]. 矿产保护与利用, 2022,42(2):80−84.Wang Yang, Tang Min, Huang Songwei, et al. Flotation recovery of phosphorous from with combined colecters from an iron tailings in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 80-84 [6] Ruan Yaoyang, He Dongsheng, Chi Ruan. Review on beneficiation techniques and reagents used for phosphate ores[J]. Minerals, 2019,9(4):253. doi: 10.3390/min9040253 [7] Lavrinenko A A, Shrader E A, Kharchikov A N, et al. Apatite flotation from brazilite-apatite-magnetite ore[J]. Journal of Mining Scinece, 2013,49(5):811−818. doi: 10.1134/S106273914905016X [8] Jafari M, Chelgani S Chehreh, Pourghahramani P, et al. Measurement of collector concentrations to make an efficient mixture for flotation of a low grade apatite[J]. Measurement, 2018,121:19−25. doi: 10.1016/j.measurement.2018.02.037 [9] Wang Zhiqiang, Ni Guanghua, Li Dewei, et al. Flotaation process optimization for phosphorus rock from Guizhou by response surface methodology[J]. Mining and Metallurgical Engineering, 2020,40(3):54−57, 61. (王志强, 聂光华, 李德伟, 等. 响应面曲线法优化贵州某磷块岩浮选工艺研究[J]. 矿冶工程, 2020,40(3):54−57, 61.Wang Zhiqiang, Ni Guanghua, Li Dewei, et al. Flotaation process optimization for phosphorus rock from Guizhou by response surface methodology[J]. Mining and Metallurgical Engineering, 2020, 40(3): 54-57, 61 [10] Chipakwe Vitalis, Jolsterå Rickard, Chelgani Saeed Chehreh. Nanobubble-assisted flotation of apatite tailings: Insights on beneficiation options[J]. ACS Omega, 2021,6(21):13888−13894. doi: 10.1021/acsomega.1c01551 [11] Sha Huiyu, Liu Changmiao, Feng Ansheng. The effect of anionic collectors on the flotation behavior of collophane[J]. Conservation and Utilization of Mineral Resources, 2016,(3):26−30. (沙惠雨, 刘长淼, 冯安生. 阴离子捕收剂对胶磷矿单矿物浮选行为的影响[J]. 矿产保护与利用, 2016,(3):26−30. doi: 10.13779/j.cnki.issn1001-0076.2016.03.006Sha Huiyu, Liu Changmiao, Feng Ansheng. The effect of anionic collectors on the flotation behavior of collophane[J]. Conservation and Utilization of Mineral Resources, 2016(3): 26-30 doi: 10.13779/j.cnki.issn1001-0076.2016.03.006 [12] Geng Zhiqiang, Sun Wei. Application of alkaline regulator in bertrandite flotation[J]. Nonferrous Metals Engineering, 2018,8(3):90−94. (耿志强, 孙伟. 碱性调整剂在某羟硅铍石浮选中的应用研究[J]. 有色金属工程, 2018,8(3):90−94.Geng Zhiqiang, Sun Wei. Application of alkaline regulator in bertrandite flotation[J]. Nonferrous Metals Engineering, 2018, 8(3): 90-94 [13] Qu Jun, Ge Yingyong. Progress in research on beneficiation process and reagents for phosphate rock[J]. Industrial Minerals & Processing, 2014,43(10):1−6, 17. (瞿军, 葛英勇. 胶磷矿选矿工艺和药剂研究进展[J]. 化工矿物与加工, 2014,43(10):1−6, 17.Qu Jun, Ge Yingyong. Progress in research on beneficiation process and reagents for phosphate rock[J]. Industrial Minerals & Processing, 2014, 43(10): 1-6, 17 [14] Zhang T, Zhang Q. Research of nanobubbles enhanced reverse anionic flotation of a midlowgrade phosphate ore[J]. Physicochemical Problems of Mineral Processing, 2022,58(1):113−125. [15] Guo Wenda, Zhu Yimin, Han Yuexin, et al. Study on the beneficiation of phosphorus-containing iron ore in Baiquan[J]. China Mining Magazine, 2018,27(10):126−130. (郭文达, 朱一民, 韩跃新, 等. 柏泉磷1-5. 铁矿石可选性研究[J]. 中国矿业, 2018,27(10):126−130.Guo Wenda, Zhu Yimin, Han Yuexin, et al. Study on the beneficiation of phosphorus-containing iron ore in Baiquan[J]. China Mining Magazine, 2018, 27(10): 126-130 -