留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb-Ti高强钢中第二相粒子固溶行为及奥氏体晶粒长大规律研究

杨建伟 杨钦 吴静 郑亚旭 汪云辉

杨建伟, 杨钦, 吴静, 郑亚旭, 汪云辉. Nb-Ti高强钢中第二相粒子固溶行为及奥氏体晶粒长大规律研究[J]. 钢铁钒钛, 2023, 44(5): 139-145. doi: 10.7513/j.issn.1004-7638.2023.05.021
引用本文: 杨建伟, 杨钦, 吴静, 郑亚旭, 汪云辉. Nb-Ti高强钢中第二相粒子固溶行为及奥氏体晶粒长大规律研究[J]. 钢铁钒钛, 2023, 44(5): 139-145. doi: 10.7513/j.issn.1004-7638.2023.05.021
Yang Jianwei, Yang Qin, Wu Jing, Zheng Yaxu, Wang Yunhui. Study on solid solution behavior of second phase particles and austenite grain growth law of Nb-Ti high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 139-145. doi: 10.7513/j.issn.1004-7638.2023.05.021
Citation: Yang Jianwei, Yang Qin, Wu Jing, Zheng Yaxu, Wang Yunhui. Study on solid solution behavior of second phase particles and austenite grain growth law of Nb-Ti high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 139-145. doi: 10.7513/j.issn.1004-7638.2023.05.021

Nb-Ti高强钢中第二相粒子固溶行为及奥氏体晶粒长大规律研究

doi: 10.7513/j.issn.1004-7638.2023.05.021
基金项目: 国家青年基金(52204341);国家面上基金(52174311,52274332);河北省钢铁联合基金(E2021208006,E2022208068)。
详细信息
    作者简介:

    杨建伟,1979年出生,男,高级工程师,研究方向:金属压力加工,E-mail:tgyangjianwei@163.com

    通讯作者:

    吴静,1979出生,女,河北唐山人,副教授,研究方向:钢铁材料强韧化,E-mail:1911513335@qq.com

  • 中图分类号: TF76,TG142

Study on solid solution behavior of second phase particles and austenite grain growth law of Nb-Ti high strength steel

  • 摘要: 采用透射电子显微镜、光学显微镜以及热力学计算,对Nb-Ti微合金化钢中纳米碳化物在高温加热过程中的固溶行为及奥氏体晶粒长大规律进行了研究。结果表明,在Nb-Ti微合金钢中,奥氏体晶粒尺寸和析出相的大小均受加热温度和保温时间的影响,奥氏体的晶粒尺寸随温度升高和保温时间延长而逐渐增大。与保温时间相比,加热温度对晶粒粗化率的影响更大。温度从950 ℃加热到1300 ℃,奥氏体晶粒尺寸从28.4 μm长大到94.6 μm,晶粒长大迅速;当加热温度达到1200 ℃,保温时间由10 min逐渐延长至120 min,奥氏体晶粒尺寸从79.4 μm逐渐增加到88.5 μm,晶粒长大速度缓慢。Nb-Ti微合金钢中的小尺寸析出相随着加热温度的升高逐渐溶解到奥氏体中,钢中碳化物总数量减少。未溶的析出物均为较大尺寸的(Ti,Nb)C。钢中未溶碳化物中Ti/Nb的原子比随加热温度的升高而增大。就热稳定性而言,碳化物中的Ti高于Nb,其回溶温度更高。随着温度的升高,Nb、Ti和C的固溶量逐渐增加,Nb-Ti微合金钢中析出相的体积分数逐渐降低。随着加热温度的升高,钢中细小的第二相粒子溶解,大大削弱了其对奥氏体晶界的钉扎强度,因此奥氏体晶界开始迁移,奥氏体晶粒开始迅速粗化。
  • 图  1  不同奥氏体化温度保温30 min的奥氏体晶粒形貌

    Figure  1.  Austenite grain morphology at different austenitizing temperatures for 30 min

    图  2  1250 不同保温时间的奥氏体晶粒形貌

    Figure  2.  Austenite grain morphology after holding at 1250 ℃ for different time

    图  3  奥氏体化温度和保温时间对晶粒尺寸的影响

    Figure  3.  Variation of austenite average grain size with heating temperature and holding time

    图  4  温度对试验钢中Ti,Nb,C平衡固溶量的影响(a)和奥氏体中析出相体积分数与温度的关系(b)

    Figure  4.  Effect of temperature on equilibrium solid solution amount of Ti, Nb and C in experimental steel (a) and relationship between volume fraction of precipitated phase in austenite and temperature (b)

    图  5  不同奥氏体化温度下保温30 min后时钢中析出相形貌

    Figure  5.  Morphology of precipitates in steel at different austenitizing temperatures for 30 min

    图  6  不同奥氏体化温度下保温30 min后钢中析出相尺寸和Ti/Nb的比例

    Figure  6.  Precipitate size and Ti / Nb ratio in steels with different austenitizing temperatures

    表  1  Nb-Ti微合金化钢的主要化学成分

    Table  1.   Main chemical composition of Nb-Ti microalloyed steel %

    CSiMnAlCrNbTi
    0.10.32.00.60.250.020.02
    下载: 导出CSV

    表  2  不同奥氏体化温度下保温30 min后钢中夹杂物成分和形状

    温度/℃夹杂物类型Ti/%Nb/%C/%形状
    950高Ti低Nb47.88.344方形
    950高Nb低Ti2.28.489.4方形
    1050高Ti低Nb49.616.533.9方形
    1150高Ti低Nb57.614.428方形
    1250高Ti低Nb49.913.236.9方形
    下载: 导出CSV
  • [1] 夏继年. 钛微合金钢中纳米碳化钛的析出控制研究[D]. 镇江: 江苏大学, 2018.

    Xia Jinian. Study on precipitation control of nano titanium carbide in titanium microalloyed steel[D]. hengjiang: Jiangsu University, 2018.
    [2] Zhang Ruiqi, Liu Zhiwei, Sun Ao, et al. Development of Nb-Ti microalloyed steel plate for high speed train bogie frame[J]. Special Steel, 2020,41(1):32−35. (张瑞琦, 刘志伟, 孙傲, 等. 高速列车转向架构架用Nb-Ti微合金化钢板的研制[J]. 特殊钢, 2020,41(1):32−35. doi: 10.3969/j.issn.1003-8620.2020.01.008

    Zhang Ruiqi, Liu Zhiwei, Sun Ao, et al. Development of Nb-Ti microalloyed steel plate for high speed train bogie frame[J]. Special Steel, 2020, 41(1): 32-35. doi: 10.3969/j.issn.1003-8620.2020.01.008
    [3] Yang Gengwei, Lu Jiawei, Sun Hui, et al. Microstructure, mechanical properties and phase transformation behavior of Ti-V microalloyed high-strength hot-strip steel[J]. Journal of Iron and Steel Research, 2019,31(8):726−732. (杨庚蔚, 陆佳伟, 孙辉, 等. Ti-V微合金化热轧高强钢的相变规律及组织性能[J]. 钢铁研究学报, 2019,31(8):726−732. doi: 10.13228/j.boyuan.issn1001-0963.20180220

    Yang Gengwei, Lu Jiawei, Sun Hui, et al. Microstructure, mechanical properties and phase transformation behavior of Ti-V microalloyed high-strength hot-strip steel[J]. Journal of Iron and Steel Research, 2019, 31(8): 726-732. doi: 10.13228/j.boyuan.issn1001-0963.20180220
    [4] Dong J, Zhou X, Liu Y, et al. Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering[J]. Materials Science and Engineering:A, 2017,683:215−226. doi: 10.1016/j.msea.2016.12.019
    [5] Karmakar A, Biswas S, Mukherjee S, et al. Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel[J]. Materials Science and Engineering:A, 2017,690:158−169. doi: 10.1016/j.msea.2017.02.101
    [6] Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy[J]. Iron Steel Vanadium Titanium, 2020,41(3):59−63. (孙 凤, 尹晓丽, 赵 达. 钒微合金化汽车钛合金的轧制工艺优化[J]. 钢铁钒钛, 2020,41(3):59−63. doi: 10.7513/j.issn.1004-7638.2020.03.009

    Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy [J]. Iron Steel Vanadium Titanium, 2020, 41(3): 59-63. doi: 10.7513/j.issn.1004-7638.2020.03.009
    [7] Hang Zidi, Feng Yunli, Cui Yan, et al. Mathematical modeling of the recrystallization kinetics of high Ti microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020,41(1):141−146. (杭子迪, 冯运莉, 崔岩, 等. 高Ti微合金高强钢静态再结晶动力学模型[J]. 钢铁钒钛, 2020,41(1):141−146. doi: 10.7513/j.issn.1004-7638.2020.01.025

    Hang Zidi, Feng Yunli, Cui Yan, et al. Mathematical modeling of the recrystallization kinetics of high Ti microalloyed high strength steel [J]. Iron Steel Vanadium Titanium, 2020, 41(1): 141-146. doi: 10.7513/j.issn.1004-7638.2020.01.025
    [8] Du Yifei, Li Wang, Tian Yaqiang. Application progress of Nb-V-Ti microalloying in TRIP steel for automobile[J]. Heat Treatment of Metals, 2019,44(8):50−56. (杜一飞, 黎旺, 田亚强. Nb-V-Ti微合金化在汽车用TRIP钢中的应用进展[J]. 金属热处理, 2019,44(8):50−56.

    Du Yifei, Li Wang, Tian Yaqiang. Application progress of Nb-V-Ti microalloying in TRIP steel for automobile[J]. Heat Treatment of Metals, 2019, 44(8): 50-56.
    [9] Yang Ying, Hou Huaxing, Ma Yupu, et al. Effect of reheating temperature on solid solution and grain growth of second phase particles in Nb, Ti containing steels[J]. Journal of Iron and Steel Research, 2008,(7):38−42. (杨颖, 侯华兴, 马玉璞, 等. 再加热温度对含Nb, Ti钢第二相粒子固溶及晶粒长大的影响[J]. 钢铁研究学报, 2008,(7):38−42.

    Yang Ying, Hou Huaxing, Ma Yupu, et al. Effect of reheating temperature on solid solution and grain growth of second phase particles in Nb, Ti containing steels[J]. Journal of Iron and Steel Research, 2008(07): 38-42.
    [10] Narayanasamy R, Parthasarathi N L, Narayanan C S. Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions[J]. Materials & Design, 2009,30(4):1310−1324.
    [11] Huo Xiangdong, Mao Xinping, Dong Feng. Effect of coiling temperature on the mechanical properties of Ti-microalloyed high strength steel[J]. Journal of University of Science and Technology Beijing, 2013,35(11):1472−1477. (霍向东, 毛新平, 董 锋. 卷取温度对Ti微合金化高强钢力学性能的影响机理[J]. 北京科技大学学报, 2013,35(11):1472−1477. doi: 10.13374/j.issn1001-053x.2013.11.010

    Huo Xiangdong, Mao Xinping, Dong Feng. Effect of coiling temperature on the mechanical properties of Ti-microalloyed high strength steel [J]. Journal of University of Science and Technology Beijing, 2013, 35(11): 1472-1477. doi: 10.13374/j.issn1001-053x.2013.11.010
    [12] 张建园. 热处理工艺对30 MnSi钢棒组织和力学性能的影响[D]. 济南: 山东大学, 2021.

    Zhang Jianyuan. Effect of heat treatment process on microstructure and mechanical properties of 30 MnSi steel bars[D]. Jinan: Shandong University, 2021.
    [13] Zhang Shengzhou, Zhou Chaogang, Duan Ziqing, et al. Analysis of cracking causes of 700 MPa grade beam steel W brace[J]. Nonferrous Metals Science and Engineering, 2022,13(2):82−87. (张声洲, 周朝刚, 段紫晴, 等. 700 MPa级大梁钢W撑开裂原因分析[J]. 有色金属科学与工程, 2022,13(2):82−87.

    Zhang Shengzhou, Zhou Chaogang, Duan Ziqing, et al. Analysis of cracking causes of 700 MPa grade beam steel W brace[J]. Nonferrous Metals Science and Engineering, 2022, 13(02): 82-87.
    [14] Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel: Competition between large grains and large particles[J]. Materials Science and Engineering:A, 2013,561:126−135. doi: 10.1016/j.msea.2012.11.019
    [15] Bu F Z, Wang X M, Yang S W, et al. Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti-Nb and Ti-Nb-Mo microalloyed steels[J]. Materials Science & Engineering:A, 2014,(620):22−29.
    [16] Xu Y, Zhang W, Sun M, et al. The blocking effect of interphase precipitation on dislocations’ movement in Ti-bearing micro-alloyed steel[J]. Materials Letters, 2015,(139):177−181.
    [17] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 26-36.

    Yong Qilong. The second phase in iron and steel materials[M]. Beijing, Metallurgical Industry Press, 2006: 26-36.
    [18] 张可. Ti-V-Mo复合微合金化高强度钢组织调控与强化机理研究[D]. 昆明: 昆明理工大学, 2016.

    Zhang Ke. Study on the mechanism of microstructure control and strengthening of Ti-V-Mo composite microalloyed high strength steel[J]. Kunming: Kunming University of Science and Technology, 2016.
    [19] Li Liming, Feng Yunli, Yang Lina. Thermodynamic calculation of Ti-containing second phase in Ti microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2019,40(1):118−122. (李立铭, 冯运莉, 杨丽娜. 钛微合金化高强钢含Ti第二相的热力学计算[J]. 钢铁钒钛, 2019,40(1):118−122. doi: 10.7513/j.issn.1004-7638.2019.01.021

    Li Liming, Feng Yunli, Yang Lina. Thermodynamic calculation of Ti-containing second phase in Ti microalloyed high strength steel [J]. Iron Steel Vanadium Titanium, 2019, 40(1): 118-122. doi: 10.7513/j.issn.1004-7638.2019.01.021
    [20] Jung J, Park J, Kim J, et al. Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyed steel[J]. Materials Science and Engineering:A, 2011,528(16-17):5529−5535. doi: 10.1016/j.msea.2011.03.086
    [21] Wang Z, Sun X, Yang Z, et al. Carbide precipitation in austenite of a Ti–Mo-containing low-carbon steel during stress relaxation[J]. Materials Science and Engineering:A, 2013,573:84−91. doi: 10.1016/j.msea.2013.02.056
    [22] Hui Yajun, Pan Hui, Li Wenyuan, et al. Study on the heating system of 1000 MPa Nb-Ti microalloyed ultra high strength steel[J]. Acta Metallurgical Sinica, 2017,53(2):129−139. (惠亚军, 潘辉, 李文远, 等. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017,53(2):129−139.

    Hui Yajun, Pan Hui, Li Wenyuan, et al. Study on the heating system of 1000 MPa Nb-Ti microalloyed ultra high strength steel[J]. Acta Metallurgical Sinica, 2017, 53(02): 129-139.
    [23] Lv Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93−98. (吕 勇, 彭 军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93−98.

    Lv Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research [J]. Iron Steel Vanadium Titanium, 2019, 40(3): 93-98.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-27
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回