留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温、高应变率下9Cr18Mo不锈钢流变行为及本构模型研究

贾海深 沈建成 罗文翠 易湘斌

贾海深, 沈建成, 罗文翠, 易湘斌. 高温、高应变率下9Cr18Mo不锈钢流变行为及本构模型研究[J]. 钢铁钒钛, 2023, 44(5): 158-166. doi: 10.7513/j.issn.1004-7638.2023.05.024
引用本文: 贾海深, 沈建成, 罗文翠, 易湘斌. 高温、高应变率下9Cr18Mo不锈钢流变行为及本构模型研究[J]. 钢铁钒钛, 2023, 44(5): 158-166. doi: 10.7513/j.issn.1004-7638.2023.05.024
Jia Haishen, Shen Jiancheng, Luo Wencui, Yi Xiangbin. Rheological behaviours and constitutive models of 9Cr18Mo stainless steel at high temperature and high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 158-166. doi: 10.7513/j.issn.1004-7638.2023.05.024
Citation: Jia Haishen, Shen Jiancheng, Luo Wencui, Yi Xiangbin. Rheological behaviours and constitutive models of 9Cr18Mo stainless steel at high temperature and high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 158-166. doi: 10.7513/j.issn.1004-7638.2023.05.024

高温、高应变率下9Cr18Mo不锈钢流变行为及本构模型研究

doi: 10.7513/j.issn.1004-7638.2023.05.024
基金项目: 甘肃省重点人才项目 ( 甘组通字 [2022]77号 );甘肃省科技计划项目—重点研发(22YF7FA132);甘肃省产业支撑计划项目(2021CYZC-52);甘肃省高等学校创新基金项目(2021A-156、2021B-319);兰州工业学院“启智”人才培养计划(2018QZ-03)。
详细信息
    作者简介:

    贾海深,1982年出生,男,河南周口人,硕士,副教授,主要从事材料力学性能研究与切削加工,E-mall:jhsk9365@126.com

    通讯作者:

    罗文翠,1969年出生,女,甘肃景泰人,硕士,教授,主要从事机械产品结构优化设计,E-mail:496021016@qq.com

  • 中图分类号: TF76, O347.3

Rheological behaviours and constitutive models of 9Cr18Mo stainless steel at high temperature and high strain rate

  • 摘要: 在UTM5305万能试验机和剖分式 Hopkinson 压杆试验装置上,对9Cr18Mo不锈钢进行了压缩试验研究,获得准静态(应变率为0.001~0.1 s−1)及动态下(温度范围为25~650 ℃,应变率范围为800~4000 s−1)的应力—应变曲线关系。由获取的应力—应变曲线,探讨了其高温度、高应变率下的流变行为。依据所得到的试验数据,对其进行了J-C、P-L两种本构模型参数的识别,并对比分析了两种本构模型的相关系数(R)和平均相对误差(AARE)。结果表明,9Cr18Mo不锈钢具有应变率敏感性和显著的温度软化效应,即其流动应力随着应变率的增加而增加,随着温度的升高而显著下降。两种本构模型的相关系数(R)分别为0.9697、0.9896,平均相对误差(AARE)分别为2.77%、1.85%,即P-L本构模预测精度要高于J-C本构模型,更能精确地描述其高温、高应变率下的流变行为。
  • 图  1  温度在25 ℃时准静态下的应力—应变曲线

    Figure  1.  Stress-strain curves in quasi-static state(T=25 ℃)

    图  2  温度在25 ℃时不同应变率下的应力—应变曲线

    Figure  2.  Stress-strain curves at different strain rates (T=25 ℃)

    图  3  25 ℃时不同应变率范围内,应变率敏感性参数β随真应变的变化关系

    Figure  3.  Relationship between strain rate sensitivity parameter (β) and strain within different strain rate ranges

    图  4  温度为650 ℃时绝热温升随应变率的变化关系

    Figure  4.  Relationship between adiabatic temperature rise and strain rate(T=650 ℃)

    图  5  应变率为4000 s−1时不同温度下的绝热温升

    Figure  5.  Adiabatic temperature rise at different temperatures ($ \dot \varepsilon $= 4000 s−1)

    图  6  应变率为4000 s−1时不同温度下的应力—应变曲线

    Figure  6.  The stress-strain curves at different temperatures ($ \dot \varepsilon $= 4000 s−1)

    图  7  不同温度变化范围内,温度灵敏度随应变变化曲线(应变率为4000 s−1

    Figure  7.  Relationship between temperature sensitivity and strain within different temperature ranges($ \dot \varepsilon $= 4000 s−1)

    图  8  J-C模型第一项拟合曲线

    Figure  8.  The first fitting curve of the J-C model

    图  9  J-C模型第二项拟合曲线

    Figure  9.  The second fitting curve of the J-C model

    图  10  J-C模型第三项拟合曲线

    Figure  10.  The third fitting curve of the J-C model

    图  11  $ \ln (\sigma ({\varepsilon _s})/{\sigma _0}) $$ \ln (1 + {\varepsilon _s}/{\varepsilon _0}) $的关系

    Figure  11.  Relationship between $ \ln (\sigma ({\varepsilon _s})/{\sigma _0}) $ and $ \ln (1 + {\varepsilon _s}/{\varepsilon _0}) $

    图  12  $ \ln (\sigma ({\varepsilon _s},{\dot \varepsilon _s})/g({\varepsilon _s})) $$ \ln (1 + {\dot \varepsilon _s}/{\dot \varepsilon _0}) $的关系

    Figure  12.  Relationship between $ \ln (\sigma ({\varepsilon _s},{\dot \varepsilon _s})/g({\varepsilon _s})) $ and $ \ln (1 + {\dot \varepsilon _s}/{\dot \varepsilon _0}) $

    图  13  $ \sigma ({\varepsilon _s},{\dot \varepsilon _s},T)/g({\varepsilon _s})\Gamma ({\dot \varepsilon _s}) $和温度的关系

    Figure  13.  Relationship between $ \sigma ({\varepsilon _s},{\dot \varepsilon _s},T)/g({\varepsilon _s})\Gamma ({\dot \varepsilon _s}) $ and temperatures

    图  14  不同应变率下应力—应变曲线的实验值与模型预测值的对比

    Figure  14.  Comparisons of the experimental values of stress-strain curves and the model predictions at different strain rates

    图  15  两种本构模型下的试验值与预测值间的相关性

    Figure  15.  The correlation between experimental and predicted values of two constitutive models

    表  1  试样化学成分

    Table  1.   Chemical composition of the sample %

    CSiCrNiMnPSMoFe
    0.990.7018.00.400.680.030.020.59Bal.
    下载: 导出CSV

    表  2  不同试验条件下两种本构模型绝对误差的平均值

    Table  2.   Average absolute error of two constitutive models under different experimental conditions

    T/℃$ \dot \varepsilon $/s−1$ \Delta {\sigma _{{\text{JC}}}} $/MPa$ \Delta {\sigma _{{\text{PL}}}} $/MPaT/℃$ \dot \varepsilon $/s−1$ \Delta {\sigma _{{\text{JC}}}} $/MPa$ \Delta {\sigma _{{\text{PL}}}} $/MPa
    258006.4244716386.10945739950080032.7962483117.3101421
    150038.9870363815.33518007150028.3932772523.19058462
    200037.048144439.391618684200045.0353691839.11484364
    250029.462157825.722001128250049.3945593246.36667909
    300022.349848525.923465121300041.9432548745.30685472
    40005.9824402163.90291057540009.84589145910.62832331
    35080027.0419033710.6061143265080031.2579037730.58632256
    150020.133643918.2893326150049.1966488427.14529
    200040.9218146237.65429567200051.5440453626.74278264
    250042.3493815441.79854765250033.9319587111.88201571
    300029.8015804636.78908546300026.762248279.985216708
    400012.4631963611.87826906400020.6890912615.5467803
    下载: 导出CSV
  • [1] Liu Zhenbao, Liang Jianxiong, Su Jie, et al. Research and development status of high-strength stainless steel[J]. Acta Metallurgica Sinica, 2020,56(4):449−554. (刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020,56(4):449−554.

    Liu Zhenbao, Liang Jianxiong, Su Jie, et al. Research and development status of high-strength stainless steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 449-554.
    [2] Young Ben, Lui Wingman. Behavior of cold-formed high strength stainless steel sections[J]. Journal of Structural Engineering, 2005,131(11):1738−1745. doi: 10.1061/(ASCE)0733-9445(2005)131:11(1738)
    [3] Ehab Ellobody, Young Ben. Structural performance of cold-formed high strength stainless steel columns[J]. Journal of Constructional Steel Research, 2005,61:1631−1649. doi: 10.1016/j.jcsr.2005.05.001
    [4] Yang Zhiyong, Liu Zhenbao, Liang Jianxiong, et al. Development of maraging stainless steel[J]. Journal of Materials and Heat Treatment, 2008,(4):1−7. (杨志勇, 刘振宝, 梁剑雄, 等. 马氏体时效不锈钢的发展[J]. 材料热处理学报, 2008,(4):1−7.

    Yang Zhiyong, Liu Zhenbao, Liang Jianxiong, et al. Development of maraging stainless steel[J]. Journal of Materials and Heat Treatment, 2008, (4): 1-7.
    [5] Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. J. Appl. Phys, 1987,61(5):1816−1825. doi: 10.1063/1.338024
    [6] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541−548.
    [7] Samantaray D, Mandal S, Borah U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science & Engineering A, 2009,526(1-2):1−6.
    [8] Kong Jinxing, Chen Hui, He Ning, et al. Dynamic mechanical properties test and constitutive model of pure iron material[J]. Journal of Aeronautics, 2014,35(7):2063−2071. (孔金星, 陈辉, 何宁, 等. 纯铁材料动态力学性能测试及本构模型[J]. 航空学报, 2014,35(7):2063−2071.

    Kong Jinxing, Chen Hui, He Ning, et al. Dynamic mechanical properties test and constitutive model of pure iron material [J]. Journal of Aeronautics, 2014, 35 (7): 2063-2071.
    [9] Tanimura S, Tsuda T, Abe A, et al. Comparison of rate-dependent constitutive models with experimental data[J]. International Journal of Impact Engineering, 2014,69(7):104−113.
    [10] 何著, 赵寿根, 杨嘉陵, 等, 0Cr17Ni4Cu4Nb不锈钢动态力学性能研究[J]. 材料科学与工程学报, 2007, 25(3): 418-421.

    He Zhu, Zhao Shougen, Yang Jialing, et al. Research on dynamic mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Journal of Materials Science and Engineering, 2007, 25(3): 418-421.
    [11] Yan Hongzhi, Gong Lijun. Constitutive model and finite element simulation of 20CrMo material[J]. Journal of Central South University (Science and Technology), 2012,43(11):4268−4273. (严宏志, 龚黎军. 20CrMo材料本构模型及其有限元模拟[J]. 中南大学学报(自然科学版), 2012,43(11):4268−4273.

    Yan Hongzhi, Gong Lijun. Constitutive model and finite element simulation of 20 CrMo material[J]. Journal of Central South University (Science and Technology), 2012, 43(11): 4268-4273.
    [12] Forni D, Chiaia B, Cadoni E. Strain rate behaviour in tension of S355 steel: Base for progressive collapse analysis[J]. Engineering Structures, 2016,119(15):164−173.
    [13] Tuazon B J, Bae K O, Lee S H, et al. Integration of a new data acquisition/processing scheme in SHPB test and characterization of the dynamic material properties of high-strength steels using the optional form of Johnson-Cook model[J]. Procedia Economics & Finance, 2014,18(9):544−551.
    [14] Huang Yong, Liang Steven Y. Modelling of CBN tool crater wear in finish hard turning[J]. International Journal of Advanced Manufacturing Technology, 2004,24(9-10):632−639. doi: 10.1007/s00170-003-1744-5
    [15] Samantaray D, Mandal S, K Bhaduri A, et al. An overview on constitutive modelling to predict elevated temperature flow behaviour of fast reactor structural materials[J]. Transactions of the Indian Institute of Metals, 2010,63(6):823−831. doi: 10.1007/s12666-010-0126-6
    [16] 周惠久, 黄明志. 金属材料强度学[M]. 北京: 科学出版社, 1989.

    Zhou Huijiu, Huang Mingzhi. Strength of metallic materials[M]. Beijing: Science Press, 1989.
    [17] 王礼立. 冲击动力学进展[M]. 合肥: 中国科学技术大学出版社, 1992.

    Wang Lili. Progress in impact dynamics[M]. Hefei: University of Science and Technology of China Press, 1992.
    [18] Xu Z, Li Y. Dynamic behaviors of 0Cr18Ni10Ti stainless steel welded joints at elevated temperatures and high strain rates[J]. Mechanics of Materials, 2009,41(2):121−130. doi: 10.1016/j.mechmat.2008.10.005
    [19] Yu Jianchao, Jiang Feng, Rong Yiming, et al. Numerical study the flow stress in the machining process[J]. International Journal of Advanced Manufacturing Technology, 2014,74(1-4):509−517. doi: 10.1007/s00170-014-5966-5
    [20] 张兵, 岳磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021, 50(1): 212-222.

    Zhang Bing, Yue Lei, Chen Hanfeng, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models [J]. Rare Metal Materials and Engineering, 2021, 50(1): 212-222.
    [21] Sheikhali A H, Morakkabati M. Constitutive modeling for hot working behavior of SP-700 titanium alloy[J]. Journal of Materials Engineering and Performance, 2019,28(10):6525−6537. doi: 10.1007/s11665-019-04355-x
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  19
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回