中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温、高应变率下9Cr18Mo不锈钢流变行为及本构模型研究

贾海深 沈建成 罗文翠 易湘斌

贾海深, 沈建成, 罗文翠, 易湘斌. 高温、高应变率下9Cr18Mo不锈钢流变行为及本构模型研究[J]. 钢铁钒钛, 2023, 44(5): 158-166. doi: 10.7513/j.issn.1004-7638.2023.05.024
引用本文: 贾海深, 沈建成, 罗文翠, 易湘斌. 高温、高应变率下9Cr18Mo不锈钢流变行为及本构模型研究[J]. 钢铁钒钛, 2023, 44(5): 158-166. doi: 10.7513/j.issn.1004-7638.2023.05.024
Jia Haishen, Shen Jiancheng, Luo Wencui, Yi Xiangbin. Rheological behaviours and constitutive models of 9Cr18Mo stainless steel at high temperature and high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 158-166. doi: 10.7513/j.issn.1004-7638.2023.05.024
Citation: Jia Haishen, Shen Jiancheng, Luo Wencui, Yi Xiangbin. Rheological behaviours and constitutive models of 9Cr18Mo stainless steel at high temperature and high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 158-166. doi: 10.7513/j.issn.1004-7638.2023.05.024

高温、高应变率下9Cr18Mo不锈钢流变行为及本构模型研究

doi: 10.7513/j.issn.1004-7638.2023.05.024
基金项目: 甘肃省重点人才项目 ( 甘组通字 [2022]77号 );甘肃省科技计划项目—重点研发(22YF7FA132);甘肃省产业支撑计划项目(2021CYZC-52);甘肃省高等学校创新基金项目(2021A-156、2021B-319);兰州工业学院“启智”人才培养计划(2018QZ-03)。
详细信息
    作者简介:

    贾海深,1982年出生,男,河南周口人,硕士,副教授,主要从事材料力学性能研究与切削加工,E-mall:jhsk9365@126.com

    通讯作者:

    罗文翠,1969年出生,女,甘肃景泰人,硕士,教授,主要从事机械产品结构优化设计,E-mail:496021016@qq.com

  • 中图分类号: TF76, O347.3

Rheological behaviours and constitutive models of 9Cr18Mo stainless steel at high temperature and high strain rate

  • 摘要: 在UTM5305万能试验机和剖分式 Hopkinson 压杆试验装置上,对9Cr18Mo不锈钢进行了压缩试验研究,获得准静态(应变率为0.001~0.1 s−1)及动态下(温度范围为25~650 ℃,应变率范围为800~4000 s−1)的应力—应变曲线关系。由获取的应力—应变曲线,探讨了其高温度、高应变率下的流变行为。依据所得到的试验数据,对其进行了J-C、P-L两种本构模型参数的识别,并对比分析了两种本构模型的相关系数(R)和平均相对误差(AARE)。结果表明,9Cr18Mo不锈钢具有应变率敏感性和显著的温度软化效应,即其流动应力随着应变率的增加而增加,随着温度的升高而显著下降。两种本构模型的相关系数(R)分别为0.9697、0.9896,平均相对误差(AARE)分别为2.77%、1.85%,即P-L本构模预测精度要高于J-C本构模型,更能精确地描述其高温、高应变率下的流变行为。
  • 图  1  温度在25 ℃时准静态下的应力—应变曲线

    Figure  1.  Stress-strain curves in quasi-static state(T=25 ℃)

    图  2  温度在25 ℃时不同应变率下的应力—应变曲线

    Figure  2.  Stress-strain curves at different strain rates (T=25 ℃)

    图  3  25 ℃时不同应变率范围内,应变率敏感性参数β随真应变的变化关系

    Figure  3.  Relationship between strain rate sensitivity parameter (β) and strain within different strain rate ranges

    图  4  温度为650 ℃时绝热温升随应变率的变化关系

    Figure  4.  Relationship between adiabatic temperature rise and strain rate(T=650 ℃)

    图  5  应变率为4000 s−1时不同温度下的绝热温升

    Figure  5.  Adiabatic temperature rise at different temperatures ($ \dot \varepsilon $= 4000 s−1)

    图  6  应变率为4000 s−1时不同温度下的应力—应变曲线

    Figure  6.  The stress-strain curves at different temperatures ($ \dot \varepsilon $= 4000 s−1)

    图  7  不同温度变化范围内,温度灵敏度随应变变化曲线(应变率为4000 s−1

    Figure  7.  Relationship between temperature sensitivity and strain within different temperature ranges($ \dot \varepsilon $= 4000 s−1)

    图  8  J-C模型第一项拟合曲线

    Figure  8.  The first fitting curve of the J-C model

    图  9  J-C模型第二项拟合曲线

    Figure  9.  The second fitting curve of the J-C model

    图  10  J-C模型第三项拟合曲线

    Figure  10.  The third fitting curve of the J-C model

    图  11  $ \ln (\sigma ({\varepsilon _s})/{\sigma _0}) $$ \ln (1 + {\varepsilon _s}/{\varepsilon _0}) $的关系

    Figure  11.  Relationship between $ \ln (\sigma ({\varepsilon _s})/{\sigma _0}) $ and $ \ln (1 + {\varepsilon _s}/{\varepsilon _0}) $

    图  12  $ \ln (\sigma ({\varepsilon _s},{\dot \varepsilon _s})/g({\varepsilon _s})) $$ \ln (1 + {\dot \varepsilon _s}/{\dot \varepsilon _0}) $的关系

    Figure  12.  Relationship between $ \ln (\sigma ({\varepsilon _s},{\dot \varepsilon _s})/g({\varepsilon _s})) $ and $ \ln (1 + {\dot \varepsilon _s}/{\dot \varepsilon _0}) $

    图  13  $ \sigma ({\varepsilon _s},{\dot \varepsilon _s},T)/g({\varepsilon _s})\Gamma ({\dot \varepsilon _s}) $和温度的关系

    Figure  13.  Relationship between $ \sigma ({\varepsilon _s},{\dot \varepsilon _s},T)/g({\varepsilon _s})\Gamma ({\dot \varepsilon _s}) $ and temperatures

    图  14  不同应变率下应力—应变曲线的实验值与模型预测值的对比

    Figure  14.  Comparisons of the experimental values of stress-strain curves and the model predictions at different strain rates

    图  15  两种本构模型下的试验值与预测值间的相关性

    Figure  15.  The correlation between experimental and predicted values of two constitutive models

    表  1  试样化学成分

    Table  1.   Chemical composition of the sample %

    CSiCrNiMnPSMoFe
    0.990.7018.00.400.680.030.020.59Bal.
    下载: 导出CSV

    表  2  不同试验条件下两种本构模型绝对误差的平均值

    Table  2.   Average absolute error of two constitutive models under different experimental conditions

    T/℃$ \dot \varepsilon $/s−1$ \Delta {\sigma _{{\text{JC}}}} $/MPa$ \Delta {\sigma _{{\text{PL}}}} $/MPaT/℃$ \dot \varepsilon $/s−1$ \Delta {\sigma _{{\text{JC}}}} $/MPa$ \Delta {\sigma _{{\text{PL}}}} $/MPa
    258006.4244716386.10945739950080032.7962483117.3101421
    150038.9870363815.33518007150028.3932772523.19058462
    200037.048144439.391618684200045.0353691839.11484364
    250029.462157825.722001128250049.3945593246.36667909
    300022.349848525.923465121300041.9432548745.30685472
    40005.9824402163.90291057540009.84589145910.62832331
    35080027.0419033710.6061143265080031.2579037730.58632256
    150020.133643918.2893326150049.1966488427.14529
    200040.9218146237.65429567200051.5440453626.74278264
    250042.3493815441.79854765250033.9319587111.88201571
    300029.8015804636.78908546300026.762248279.985216708
    400012.4631963611.87826906400020.6890912615.5467803
    下载: 导出CSV
  • [1] Liu Zhenbao, Liang Jianxiong, Su Jie, et al. Research and development status of high-strength stainless steel[J]. Acta Metallurgica Sinica, 2020,56(4):449−554. (刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020,56(4):449−554.

    Liu Zhenbao, Liang Jianxiong, Su Jie, et al. Research and development status of high-strength stainless steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 449-554.
    [2] Young Ben, Lui Wingman. Behavior of cold-formed high strength stainless steel sections[J]. Journal of Structural Engineering, 2005,131(11):1738−1745. doi: 10.1061/(ASCE)0733-9445(2005)131:11(1738)
    [3] Ehab Ellobody, Young Ben. Structural performance of cold-formed high strength stainless steel columns[J]. Journal of Constructional Steel Research, 2005,61:1631−1649. doi: 10.1016/j.jcsr.2005.05.001
    [4] Yang Zhiyong, Liu Zhenbao, Liang Jianxiong, et al. Development of maraging stainless steel[J]. Journal of Materials and Heat Treatment, 2008,(4):1−7. (杨志勇, 刘振宝, 梁剑雄, 等. 马氏体时效不锈钢的发展[J]. 材料热处理学报, 2008,(4):1−7.

    Yang Zhiyong, Liu Zhenbao, Liang Jianxiong, et al. Development of maraging stainless steel[J]. Journal of Materials and Heat Treatment, 2008, (4): 1-7.
    [5] Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. J. Appl. Phys, 1987,61(5):1816−1825. doi: 10.1063/1.338024
    [6] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541−548.
    [7] Samantaray D, Mandal S, Borah U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science & Engineering A, 2009,526(1-2):1−6.
    [8] Kong Jinxing, Chen Hui, He Ning, et al. Dynamic mechanical properties test and constitutive model of pure iron material[J]. Journal of Aeronautics, 2014,35(7):2063−2071. (孔金星, 陈辉, 何宁, 等. 纯铁材料动态力学性能测试及本构模型[J]. 航空学报, 2014,35(7):2063−2071.

    Kong Jinxing, Chen Hui, He Ning, et al. Dynamic mechanical properties test and constitutive model of pure iron material [J]. Journal of Aeronautics, 2014, 35 (7): 2063-2071.
    [9] Tanimura S, Tsuda T, Abe A, et al. Comparison of rate-dependent constitutive models with experimental data[J]. International Journal of Impact Engineering, 2014,69(7):104−113.
    [10] 何著, 赵寿根, 杨嘉陵, 等, 0Cr17Ni4Cu4Nb不锈钢动态力学性能研究[J]. 材料科学与工程学报, 2007, 25(3): 418-421.

    He Zhu, Zhao Shougen, Yang Jialing, et al. Research on dynamic mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Journal of Materials Science and Engineering, 2007, 25(3): 418-421.
    [11] Yan Hongzhi, Gong Lijun. Constitutive model and finite element simulation of 20CrMo material[J]. Journal of Central South University (Science and Technology), 2012,43(11):4268−4273. (严宏志, 龚黎军. 20CrMo材料本构模型及其有限元模拟[J]. 中南大学学报(自然科学版), 2012,43(11):4268−4273.

    Yan Hongzhi, Gong Lijun. Constitutive model and finite element simulation of 20 CrMo material[J]. Journal of Central South University (Science and Technology), 2012, 43(11): 4268-4273.
    [12] Forni D, Chiaia B, Cadoni E. Strain rate behaviour in tension of S355 steel: Base for progressive collapse analysis[J]. Engineering Structures, 2016,119(15):164−173.
    [13] Tuazon B J, Bae K O, Lee S H, et al. Integration of a new data acquisition/processing scheme in SHPB test and characterization of the dynamic material properties of high-strength steels using the optional form of Johnson-Cook model[J]. Procedia Economics & Finance, 2014,18(9):544−551.
    [14] Huang Yong, Liang Steven Y. Modelling of CBN tool crater wear in finish hard turning[J]. International Journal of Advanced Manufacturing Technology, 2004,24(9-10):632−639. doi: 10.1007/s00170-003-1744-5
    [15] Samantaray D, Mandal S, K Bhaduri A, et al. An overview on constitutive modelling to predict elevated temperature flow behaviour of fast reactor structural materials[J]. Transactions of the Indian Institute of Metals, 2010,63(6):823−831. doi: 10.1007/s12666-010-0126-6
    [16] 周惠久, 黄明志. 金属材料强度学[M]. 北京: 科学出版社, 1989.

    Zhou Huijiu, Huang Mingzhi. Strength of metallic materials[M]. Beijing: Science Press, 1989.
    [17] 王礼立. 冲击动力学进展[M]. 合肥: 中国科学技术大学出版社, 1992.

    Wang Lili. Progress in impact dynamics[M]. Hefei: University of Science and Technology of China Press, 1992.
    [18] Xu Z, Li Y. Dynamic behaviors of 0Cr18Ni10Ti stainless steel welded joints at elevated temperatures and high strain rates[J]. Mechanics of Materials, 2009,41(2):121−130. doi: 10.1016/j.mechmat.2008.10.005
    [19] Yu Jianchao, Jiang Feng, Rong Yiming, et al. Numerical study the flow stress in the machining process[J]. International Journal of Advanced Manufacturing Technology, 2014,74(1-4):509−517. doi: 10.1007/s00170-014-5966-5
    [20] 张兵, 岳磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021, 50(1): 212-222.

    Zhang Bing, Yue Lei, Chen Hanfeng, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models [J]. Rare Metal Materials and Engineering, 2021, 50(1): 212-222.
    [21] Sheikhali A H, Morakkabati M. Constitutive modeling for hot working behavior of SP-700 titanium alloy[J]. Journal of Materials Engineering and Performance, 2019,28(10):6525−6537. doi: 10.1007/s11665-019-04355-x
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  62
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回