中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛微合金化高强大梁钢高温热塑性能研究

宋裕 高智君 汪水泽 尹晶晶

宋裕, 高智君, 汪水泽, 尹晶晶. 钛微合金化高强大梁钢高温热塑性能研究[J]. 钢铁钒钛, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025
引用本文: 宋裕, 高智君, 汪水泽, 尹晶晶. 钛微合金化高强大梁钢高温热塑性能研究[J]. 钢铁钒钛, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025
Song Yu, Gao Zhijun, Wang Shuize, Yin Jingjing. Study on the hot ductility of titanium microalloyed high-strength beam steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025
Citation: Song Yu, Gao Zhijun, Wang Shuize, Yin Jingjing. Study on the hot ductility of titanium microalloyed high-strength beam steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025

钛微合金化高强大梁钢高温热塑性能研究

doi: 10.7513/j.issn.1004-7638.2023.05.025
基金项目: 国家自然基金青年基金项目(52104369)
详细信息
    作者简介:

    宋裕,1989年出生,女,硕士研究生,高级工程师,主要从事Ti微合金化热轧高强钢产品开发与应用,E-mail:18281219693@163.com

  • 中图分类号: TF76,TG115.5

Study on the hot ductility of titanium microalloyed high-strength beam steels

  • 摘要: 通过高温拉伸试验研究了600~1300 ℃温度范围内不同Ti含量的钛微合金化高强大梁钢热塑性规律,基于Thermo-calc热力学计算软件对不同试验钢中主要析出相的析出区间进行计算,利用光学显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)对热拉伸断口形貌、断口析出物、显微组织特征进行观察和讨论。结果表明,随着四种试验钢中Ti含量的增加,低塑性区逐渐向下移动,低塑性区间宽度增加,含Ti量最高的950L钢热塑性显著下降。主要原因是沿晶界析出的网膜状铁素体弱化了晶界强度,为裂纹的萌生和扩展提供了条件。此外,在应力的作用下,钢中存在的微米级TiN颗粒及其析出物易于与基体间形成产生微孔,微孔聚集形成裂纹,从而降低试验钢的热塑性。因此,提出在保证矫直温度的前提下适当提高钢水冷却速率,抑制薄膜状先共析铁素体的析出及第二相析出,可有效改善试验钢在第III脆性区间的高温热塑性。
  • 图  1  热模拟拉伸试样(单位:mm)

    Figure  1.  The specimens of hot tensile test

    图  2  不同温度下试验钢的抗拉强度及断面收缩率

    Figure  2.  Tensile strength and area reduction of experimental steel at different temperatures

    (a)610L;(b)700L;(c)800L;(d)950L

    图  3  800 ℃下不同试验钢断口SEM形貌

    Figure  3.  SEM morphology of fracture surface of different experimental steels at 800 ℃

    (a)、(b)610L;(c)、(d)700L;(e)、(f)800L;(g)、(h)950L

    图  4  800 ℃下不同试验钢断口附近组织形貌

    Figure  4.  Microstructure near the fracture area of different experimental steels at 800 ℃;

    (a)、(b)610L,(c)、(d)700L,(e)、(f)800L,(g)、(h)950L

    图  5  950L钢900 ℃(a)、(b)及1150 ℃(c)~(f)微观组织TEM观察

    Figure  5.  TEM microstructures of the 950L steel observed steel at 900 ℃ (a), (b) and 1150 ℃ (c)~(f)

    图  6  不同试验钢Thermo-cala相图计算结果

    Figure  6.  Calculation results of Thermo-calc phase diagrams of different experimental steels

    (a)610L;(b)700L;(c)800L;(d)950L

    图  7  不同试验钢铸态金相组织

    Figure  7.  As-cast metallograph of different experimental steels

    (a)610L;(b)700L;(c)800L;(d)950L

    图  8  不同类型析出物数密度

    (a)610L;(b)700L;(c)800L;(d)950L

    Figure  8.  The number density of different types of precipitates

    图  9  950L试验钢析出物扫描图片及面扫结果

    Figure  9.  Scanning pictures and surface scanning results of 950L experimental steel precipitates

    表  1  试验钢主要化学成分

    Table  1.   Main chemical compositions of the tested steel %

    钢种CSiMnNNbTiMoVAlCa
    610L0.060.071.160.00280.0250.0380.0470.0002
    700L0.060.061.490.0030.0370.0750.0340.0018
    800L0.050.091.550.0030.0380.0890.170.0380.0008
    950L0.0870.081.900.0040.0340.1060.210.090.0290.0012
    下载: 导出CSV
  • [1] Li Xiaolin, Lei Chengshuai, Tian Qiang, et al. Nanoscale cementite and microalloyed carbide strengthened Ti bearing low carbon steel plates in the context of newly developed ultrafast cooling[J]. Materials Science and Engineering:A, 2017,698:268−276. doi: 10.1016/j.msea.2017.05.066
    [2] Wang Xinhua, Liu Xinyu, Lu Wenjing, et al. Carbide and nitride precipitation and hot ductility of continuous cast steel slabs containing Nb, V, Ti[J]. Journal of Iron and Steel Research, 1998,10(6):36−40. (王新华, 刘新宇, 吕文景,等. 含Nb、V、Ti钢连铸坯中碳、氮化物的析出及钢的高温塑性[J]. 钢铁研究学报, 1998,10(6):36−40. doi: 10.13228/j.boyuan.issn1001-0963.1998.06.008

    Wang Xinhua, Liu Xinyu, Lu Wenjing, et al. Carbide and nitride precipitation and hot ductility of continuous cast steel slabs containing Nb, V, Ti [J]. Journal of Iron and Steel Research, 1998, 10(6): 36-40. doi: 10.13228/j.boyuan.issn1001-0963.1998.06.008
    [3] Zheng Shuguo, Davis Claire, Strangwood M. Elemental segregation and subsequent precipitation during solidification of continuous cast Nb-V-Ti high-strength low-alloy steels[J]. Materials Characterization, 2014,95:94−104. doi: 10.1016/j.matchar.2014.06.008
    [4] Arıkan Mustafa Merih. Hot ductility behavior of a peritectic steel during continuous casting[J]. Metals, 2015,5(2):986−999. doi: 10.3390/met5020986
    [5] Dippenaar Rian, Bernhard Christian, Schider Siegfried, et al. Austenite grain growth and the surface quality of continuously cast steel[J]. Metallurgical and Materials Transactions B, 2014,45(2):409−418. doi: 10.1007/s11663-013-9844-6
    [6] Suzuki Hirowo G, Nishimura Satoshi, Yamaguchi Shigehiro. Characteristics of hot ductility in steels subjected to the melting and solidification[J]. Transactions of the Iron and Steel Institute of Japan, 1982,22(1):48−56. doi: 10.2355/isijinternational1966.22.48
    [7] Banks K M, Tuling A, Mintz B. Influence of thermal history on hot ductility of steel and its relationship to the problem of cracking in continuous casting[J]. Materials Science and Technology, 2012,28(5):536−542. doi: 10.1179/1743284711Y.0000000094
    [8] Vedani Maurizo, Dellasega David, Mannuccii Aldo. Characterization of grain-boundary precipitates after hot-ductility tests of microalloyed steels[J]. ISIJ international, 2009,49(3):446−452. doi: 10.2355/isijinternational.49.446
    [9] Mintz Barrie, Crowther D N. Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting[J]. International Materials Reviews, 2010,55(3):168−196. doi: 10.1179/095066009X12572530170624
    [10] Spradbery C, Mintz B. Influence of undercooling thermal cycle on hot ductility of C-Mn-Al-Ti and C-Mn-Al-Nb-Ti steels[J]. Ironmaking & Steelmaking, 2005,32(4):319−324.
    [11] Liu Hongbo, Liu Jianhua, Ding Hao, et al. Influence of Ti on the hot ductility of high-manganese austenitic steels[J]. High Temperature Materials and Processes, 2017,39(4):520−528. (刘洪波, 刘建华, 丁浩,等. 钛和钒对高锰钢高温热延性的影响[J]. 工程科学学报, 2017,39(4):520−528.

    Liu Hongbo, Liu Jianhua, Ding Hao, et al. Influence of Ti on the Hot Ductility of High-manganese Austenitic Steels[J]. High Temperature Materials and Processes, 2017, 39(04): 520-528.
    [12] Qian Guoyu, Cheng Guoguang, Hou Zibing. The Influence of the induced ferrite and precipitates of Ti-bearing steel on the ductility of continuous casting slab[J]. High Temperature Materials and Processes, 2015,34(7):611−620.
    [13] Beal Coline, Caliskanoglu Ozan, Sommitsch Christof, et al. Influence of thermal history on the hot ductility of Ti-Nb microalloyed steels[C]//Materials Science Forum. Trans Tech Publications Ltd, 2017, 879: 199-204.
    [14] Mintz Barrie. The influence of composition on the hot ductility of steels and to the problem of transverse cracking[J]. ISIJ International, 1999,39(9):833−855. doi: 10.2355/isijinternational.39.833
    [15] Mintz Barrie, Arrowsmith J M. Hot-ductility behaviour of C-Mn-Nb-Al steels and its relationship to crack propagation during the straightening of continuously cast strand[J]. Metals Technology, 1979,6(1):24−32. doi: 10.1179/030716979803276471
    [16] Mintz Barrie. Importance of Ar3 temperature in controlling ductility and width of hot ductility trough in steels, and its relationship to transverse cracking[J]. Materials Science and Technology, 1996,12(2):132−138. doi: 10.1179/026708396790165605
    [17] Cheng Zhuo, Liu Jinyue, Wang Shuize, et al. Effect of V on the hot ductility behavior of high strength hot-stamped steels and associated microstructural features[J]. Metallurgical and Materials Transactions A, 2021,52,(7):3140−3151. doi: 10.1007/s11661-021-06308-3
    [18] Jiang Xue, Chen Xianmiao, Song Shenhua, et al. Phosphorus-induced hot ductility enhancement of 1Cr–0.5Mo low alloy steel[J]. Materials Science and Engineering:A, 2013,574:46−53. doi: 10.1016/j.msea.2013.02.072
    [19] Yuan Shentie, Lai Chaobin, Chen Yingjun. Hot ductility of EQ47 steel and influence of Mn and Cr on it[J]. Heat Treatment of Metals, 2014,39(8):68−70. (袁慎铁, 赖朝彬, 陈英俊. EQ47钢的高温塑性及Mn、Cr对其高温塑性的影响[J]. 金属热处理, 2014,39(8):68−70. doi: 10.13251/j.issn.0254-6051.2014.08.017

    Yuan Shentie, Lai Chaobin, Chen Yingjun. Hot ductility of EQ47 Steel and influence of Mn and Cr on it[J]. Heat Treatment of Metals, 2014, 39(08): 68-70. doi: 10.13251/j.issn.0254-6051.2014.08.017
    [20] Mintz B, Yue S, Jonas J J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting[J]. International Materials Reviews, 1991,36(1):187−220. doi: 10.1179/imr.1991.36.1.187
    [21] Banks K, Koursaris A, Verdoorn F, et al. Precipitation and hot ductility of low CV and low CV-Nb microalloyed steels during thin slab casting[J]. Materials science and technology, 2001,17(12):1596−1604. doi: 10.1179/026708301101509665
    [22] Mao Xinping. Titanium microalloyed steel: fundamentals, technology, and products[M]. Berlin: Springer, 2019.
    [23] Cho Kyung Chul, Mun Dong Jun, Koo Yang Mo, et al. Effect of niobium and titanium addition on the hot ductility of boron containing steel[J]. Materials Science and Engineering:A, 2011,528(10-11):3556−3561. doi: 10.1016/j.msea.2011.01.097
    [24] Wang H, Liu W Y, Duan X P, et al. Research into hot ductility of high aluminium dual phase steel[J]. Ironmaking & Steelmaking, 2009,36(2):120−124.
    [25] Mejía Ignacio, Salas-Reyes Antonio Enrique, Bedolla-Jacuinde A, et al. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel[J]. Materials Science and Engineering: A, 2014,616:229−239. doi: 10.1016/j.msea.2014.08.030
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  105
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回