留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛微合金化高强大梁钢高温热塑性能研究

宋裕 高智君 汪水泽 尹晶晶

宋裕, 高智君, 汪水泽, 尹晶晶. 钛微合金化高强大梁钢高温热塑性能研究[J]. 钢铁钒钛, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025
引用本文: 宋裕, 高智君, 汪水泽, 尹晶晶. 钛微合金化高强大梁钢高温热塑性能研究[J]. 钢铁钒钛, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025
Song Yu, Gao Zhijun, Wang Shuize, Yin Jingjing. Study on the hot ductility of titanium microalloyed high-strength beam steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025
Citation: Song Yu, Gao Zhijun, Wang Shuize, Yin Jingjing. Study on the hot ductility of titanium microalloyed high-strength beam steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025

钛微合金化高强大梁钢高温热塑性能研究

doi: 10.7513/j.issn.1004-7638.2023.05.025
基金项目: 国家自然基金青年基金项目(52104369)
详细信息
    作者简介:

    宋裕,1989年出生,女,硕士研究生,高级工程师,主要从事Ti微合金化热轧高强钢产品开发与应用,E-mail:18281219693@163.com

  • 中图分类号: TF76,TG115.5

Study on the hot ductility of titanium microalloyed high-strength beam steels

  • 摘要: 通过高温拉伸试验研究了600~1300 ℃温度范围内不同Ti含量的钛微合金化高强大梁钢热塑性规律,基于Thermo-calc热力学计算软件对不同试验钢中主要析出相的析出区间进行计算,利用光学显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)对热拉伸断口形貌、断口析出物、显微组织特征进行观察和讨论。结果表明,随着四种试验钢中Ti含量的增加,低塑性区逐渐向下移动,低塑性区间宽度增加,含Ti量最高的950L钢热塑性显著下降。主要原因是沿晶界析出的网膜状铁素体弱化了晶界强度,为裂纹的萌生和扩展提供了条件。此外,在应力的作用下,钢中存在的微米级TiN颗粒及其析出物易于与基体间形成产生微孔,微孔聚集形成裂纹,从而降低试验钢的热塑性。因此,提出在保证矫直温度的前提下适当提高钢水冷却速率,抑制薄膜状先共析铁素体的析出及第二相析出,可有效改善试验钢在第III脆性区间的高温热塑性。
  • 图  1  热模拟拉伸试样(单位:mm)

    Figure  1.  The specimens of hot tensile test

    图  2  不同温度下试验钢的抗拉强度及断面收缩率

    Figure  2.  Tensile strength and area reduction of experimental steel at different temperatures

    (a)610L;(b)700L;(c)800L;(d)950L

    图  3  800 ℃下不同试验钢断口SEM形貌

    Figure  3.  SEM morphology of fracture surface of different experimental steels at 800 ℃

    (a)、(b)610L;(c)、(d)700L;(e)、(f)800L;(g)、(h)950L

    图  4  800 ℃下不同试验钢断口附近组织形貌

    Figure  4.  Microstructure near the fracture area of different experimental steels at 800 ℃;

    (a)、(b)610L,(c)、(d)700L,(e)、(f)800L,(g)、(h)950L

    图  5  950L钢900 ℃(a)、(b)及1150 ℃(c)~(f)微观组织TEM观察

    Figure  5.  TEM microstructures of the 950L steel observed steel at 900 ℃ (a), (b) and 1150 ℃ (c)~(f)

    图  6  不同试验钢Thermo-cala相图计算结果

    Figure  6.  Calculation results of Thermo-calc phase diagrams of different experimental steels

    (a)610L;(b)700L;(c)800L;(d)950L

    图  7  不同试验钢铸态金相组织

    Figure  7.  As-cast metallograph of different experimental steels

    (a)610L;(b)700L;(c)800L;(d)950L

    图  8  不同类型析出物数密度

    (a)610L;(b)700L;(c)800L;(d)950L

    Figure  8.  The number density of different types of precipitates

    图  9  950L试验钢析出物扫描图片及面扫结果

    Figure  9.  Scanning pictures and surface scanning results of 950L experimental steel precipitates

    表  1  试验钢主要化学成分

    Table  1.   Main chemical compositions of the tested steel %

    钢种CSiMnNNbTiMoVAlCa
    610L0.060.071.160.00280.0250.0380.0470.0002
    700L0.060.061.490.0030.0370.0750.0340.0018
    800L0.050.091.550.0030.0380.0890.170.0380.0008
    950L0.0870.081.900.0040.0340.1060.210.090.0290.0012
    下载: 导出CSV
  • [1] Li Xiaolin, Lei Chengshuai, Tian Qiang, et al. Nanoscale cementite and microalloyed carbide strengthened Ti bearing low carbon steel plates in the context of newly developed ultrafast cooling[J]. Materials Science and Engineering:A, 2017,698:268−276. doi: 10.1016/j.msea.2017.05.066
    [2] Wang Xinhua, Liu Xinyu, Lu Wenjing, et al. Carbide and nitride precipitation and hot ductility of continuous cast steel slabs containing Nb, V, Ti[J]. Journal of Iron and Steel Research, 1998,10(6):36−40. (王新华, 刘新宇, 吕文景,等. 含Nb、V、Ti钢连铸坯中碳、氮化物的析出及钢的高温塑性[J]. 钢铁研究学报, 1998,10(6):36−40. doi: 10.13228/j.boyuan.issn1001-0963.1998.06.008

    Wang Xinhua, Liu Xinyu, Lu Wenjing, et al. Carbide and nitride precipitation and hot ductility of continuous cast steel slabs containing Nb, V, Ti [J]. Journal of Iron and Steel Research, 1998, 10(6): 36-40. doi: 10.13228/j.boyuan.issn1001-0963.1998.06.008
    [3] Zheng Shuguo, Davis Claire, Strangwood M. Elemental segregation and subsequent precipitation during solidification of continuous cast Nb-V-Ti high-strength low-alloy steels[J]. Materials Characterization, 2014,95:94−104. doi: 10.1016/j.matchar.2014.06.008
    [4] Arıkan Mustafa Merih. Hot ductility behavior of a peritectic steel during continuous casting[J]. Metals, 2015,5(2):986−999. doi: 10.3390/met5020986
    [5] Dippenaar Rian, Bernhard Christian, Schider Siegfried, et al. Austenite grain growth and the surface quality of continuously cast steel[J]. Metallurgical and Materials Transactions B, 2014,45(2):409−418. doi: 10.1007/s11663-013-9844-6
    [6] Suzuki Hirowo G, Nishimura Satoshi, Yamaguchi Shigehiro. Characteristics of hot ductility in steels subjected to the melting and solidification[J]. Transactions of the Iron and Steel Institute of Japan, 1982,22(1):48−56. doi: 10.2355/isijinternational1966.22.48
    [7] Banks K M, Tuling A, Mintz B. Influence of thermal history on hot ductility of steel and its relationship to the problem of cracking in continuous casting[J]. Materials Science and Technology, 2012,28(5):536−542. doi: 10.1179/1743284711Y.0000000094
    [8] Vedani Maurizo, Dellasega David, Mannuccii Aldo. Characterization of grain-boundary precipitates after hot-ductility tests of microalloyed steels[J]. ISIJ international, 2009,49(3):446−452. doi: 10.2355/isijinternational.49.446
    [9] Mintz Barrie, Crowther D N. Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting[J]. International Materials Reviews, 2010,55(3):168−196. doi: 10.1179/095066009X12572530170624
    [10] Spradbery C, Mintz B. Influence of undercooling thermal cycle on hot ductility of C-Mn-Al-Ti and C-Mn-Al-Nb-Ti steels[J]. Ironmaking & Steelmaking, 2005,32(4):319−324.
    [11] Liu Hongbo, Liu Jianhua, Ding Hao, et al. Influence of Ti on the hot ductility of high-manganese austenitic steels[J]. High Temperature Materials and Processes, 2017,39(4):520−528. (刘洪波, 刘建华, 丁浩,等. 钛和钒对高锰钢高温热延性的影响[J]. 工程科学学报, 2017,39(4):520−528.

    Liu Hongbo, Liu Jianhua, Ding Hao, et al. Influence of Ti on the Hot Ductility of High-manganese Austenitic Steels[J]. High Temperature Materials and Processes, 2017, 39(04): 520-528.
    [12] Qian Guoyu, Cheng Guoguang, Hou Zibing. The Influence of the induced ferrite and precipitates of Ti-bearing steel on the ductility of continuous casting slab[J]. High Temperature Materials and Processes, 2015,34(7):611−620.
    [13] Beal Coline, Caliskanoglu Ozan, Sommitsch Christof, et al. Influence of thermal history on the hot ductility of Ti-Nb microalloyed steels[C]//Materials Science Forum. Trans Tech Publications Ltd, 2017, 879: 199-204.
    [14] Mintz Barrie. The influence of composition on the hot ductility of steels and to the problem of transverse cracking[J]. ISIJ International, 1999,39(9):833−855. doi: 10.2355/isijinternational.39.833
    [15] Mintz Barrie, Arrowsmith J M. Hot-ductility behaviour of C-Mn-Nb-Al steels and its relationship to crack propagation during the straightening of continuously cast strand[J]. Metals Technology, 1979,6(1):24−32. doi: 10.1179/030716979803276471
    [16] Mintz Barrie. Importance of Ar3 temperature in controlling ductility and width of hot ductility trough in steels, and its relationship to transverse cracking[J]. Materials Science and Technology, 1996,12(2):132−138. doi: 10.1179/026708396790165605
    [17] Cheng Zhuo, Liu Jinyue, Wang Shuize, et al. Effect of V on the hot ductility behavior of high strength hot-stamped steels and associated microstructural features[J]. Metallurgical and Materials Transactions A, 2021,52,(7):3140−3151. doi: 10.1007/s11661-021-06308-3
    [18] Jiang Xue, Chen Xianmiao, Song Shenhua, et al. Phosphorus-induced hot ductility enhancement of 1Cr–0.5Mo low alloy steel[J]. Materials Science and Engineering:A, 2013,574:46−53. doi: 10.1016/j.msea.2013.02.072
    [19] Yuan Shentie, Lai Chaobin, Chen Yingjun. Hot ductility of EQ47 steel and influence of Mn and Cr on it[J]. Heat Treatment of Metals, 2014,39(8):68−70. (袁慎铁, 赖朝彬, 陈英俊. EQ47钢的高温塑性及Mn、Cr对其高温塑性的影响[J]. 金属热处理, 2014,39(8):68−70. doi: 10.13251/j.issn.0254-6051.2014.08.017

    Yuan Shentie, Lai Chaobin, Chen Yingjun. Hot ductility of EQ47 Steel and influence of Mn and Cr on it[J]. Heat Treatment of Metals, 2014, 39(08): 68-70. doi: 10.13251/j.issn.0254-6051.2014.08.017
    [20] Mintz B, Yue S, Jonas J J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting[J]. International Materials Reviews, 1991,36(1):187−220. doi: 10.1179/imr.1991.36.1.187
    [21] Banks K, Koursaris A, Verdoorn F, et al. Precipitation and hot ductility of low CV and low CV-Nb microalloyed steels during thin slab casting[J]. Materials science and technology, 2001,17(12):1596−1604. doi: 10.1179/026708301101509665
    [22] Mao Xinping. Titanium microalloyed steel: fundamentals, technology, and products[M]. Berlin: Springer, 2019.
    [23] Cho Kyung Chul, Mun Dong Jun, Koo Yang Mo, et al. Effect of niobium and titanium addition on the hot ductility of boron containing steel[J]. Materials Science and Engineering:A, 2011,528(10-11):3556−3561. doi: 10.1016/j.msea.2011.01.097
    [24] Wang H, Liu W Y, Duan X P, et al. Research into hot ductility of high aluminium dual phase steel[J]. Ironmaking & Steelmaking, 2009,36(2):120−124.
    [25] Mejía Ignacio, Salas-Reyes Antonio Enrique, Bedolla-Jacuinde A, et al. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel[J]. Materials Science and Engineering: A, 2014,616:229−239. doi: 10.1016/j.msea.2014.08.030
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  25
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回