留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
蒲宇文, 刘羲, 唐康, 徐宗源, 郑国灿, 陈燕, 刘作华, 杜军, 彭毅, 陶长元. 钒酸盐形态分析研究[J]. 钢铁钒钛, 2023, 44(6): 17-23. doi: 10.7513/j.issn.1004-7638.2023.06.003
引用本文: 蒲宇文, 刘羲, 唐康, 徐宗源, 郑国灿, 陈燕, 刘作华, 杜军, 彭毅, 陶长元. 钒酸盐形态分析研究[J]. 钢铁钒钛, 2023, 44(6): 17-23. doi: 10.7513/j.issn.1004-7638.2023.06.003
Pu Yuwen, Liu Xi, Tang Kang, Xu Zongyuan, Zheng Guocan, Chen Yan, Liu Zuohua, Du Jun, Peng Yi, Tao Changyuan. Study on speciation analysis of vanadate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 17-23. doi: 10.7513/j.issn.1004-7638.2023.06.003
Citation: Pu Yuwen, Liu Xi, Tang Kang, Xu Zongyuan, Zheng Guocan, Chen Yan, Liu Zuohua, Du Jun, Peng Yi, Tao Changyuan. Study on speciation analysis of vanadate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 17-23. doi: 10.7513/j.issn.1004-7638.2023.06.003

钒酸盐形态分析研究

doi: 10.7513/j.issn.1004-7638.2023.06.003
详细信息
    作者简介:

    蒲宇文,1997年出生,女,汉族,硕士,主要从事转炉钒渣钙钡复合焙烧及钒酸盐形态研究,E-mail:2231394213@qq.com

  • 中图分类号: TF841.3

Study on speciation analysis of vanadate

  • 摘要: 在钒渣钙化焙烧-酸浸工艺中,产生的浸出液含有较多的杂质,其含钒相的变化情况会直接影响钒的总体回收率。在不同条件下,测定钒相在浸出过程中的迁徙和转变是一个巨大的挑战,因此研究了不同条件对钒形态的影响和转化规律。采用软件Visual MINTEQ 3.1模拟计算多钒酸结构的变化情况,为不同pH下沉钒提供了理论基础。使用基质辅助激光解吸飞行时间质谱仪(MALDI-TOF-MS)检测钒存在形态。测试结果表明,pH值较低时,V10O286−是主要物质,随着pH值的增加,VO3、V4O124−的含量增加,成为主要物质之一;浓度导致相对含量发生了变化,浓度越低,VO3含量越少,V10O286−含量越多;不同阴阳离子对钒形态影响不显著。此结果丰富了钒形态研究,为钒渣中钒元素的定向转化提供了理论基础,同时也为后续沉钒工艺提供了依据,提升转炉钒渣提钒效率。
  • 图  1  Mn2V2O7 XRD谱

    Figure  1.  XRD spectrum of Mn2V2O7

    图  2  MgV2O6 XRD谱

    Figure  2.  XRD spectrum of MgV2O6

    图  3  CaV2O6 XRD谱

    Figure  3.  XRD spectrum of CaV2O6

    图  4  不同酸调节溶液pH=2 质谱

    Figure  4.  Mass spectra of different acid regulating solutions (pH=2)

    图  5  一价金属阳离子钒酸盐质谱

    Figure  5.  Mass spectra of monovalent metal cation vanadate

    图  6  pH=2 一价金属阳离子钒酸盐质谱

    Figure  6.  Mass spectra of monovalent metal cation vanadate with pH=2

    图  7  二价金属阳离子钒酸盐质谱

    Figure  7.  Mass spectra of bivalent metal cation vanadate

    图  8  钒酸锰质谱

    Figure  8.  Mass spectra of manganese vanadate

    图  9  不同pH条件下NaVO3溶液质谱

    Figure  9.  Mass spectra of NaVO3 solution at different pH

    图  10  不同pH条件下KVO3溶液质谱

    Figure  10.  Mass spectra of KVO3 solution at different pH

    图  11  不同pH条件下NH4VO3溶液质谱

    Figure  11.  Mass spectra of NH4VO3 solution at different pH

    图  12  不同浓度NaVO3溶液质谱

    Figure  12.  Mass spectra of NaVO3 solution of different concentrations

    图  13  pH=3时,不同浓度NaVO3溶液质谱

    Figure  13.  Mass spectra of NaVO3 solution of different concentrations (pH=3)

    图  14  CV=1 M时 钒形态分布模拟

    Figure  14.  Simulation diagrams of vanadium speciation distribution at CV=1 M

  • [1] Li H Y, Wang C J, Yuan Y H, et al. Magnesiation roasting-acid leaching: A zero-discharge method for vanadium extraction from vanadium slag[J]. J Clean Prod, 2020,260:121091. doi: 10.1016/j.jclepro.2020.121091
    [2] Zhu X B, Li W, Zhang C X. Extraction and removal of vanadium by adsorption with resin 201*7 from vanadium waste liquid[J]. Environ Res, 2020,180:108865. doi: 10.1016/j.envres.2019.108865
    [3] Teng A J, Xue X X. A novel roasting process to extract vanadium and chromium from high chromium vanadium slag using a NaOH−NaNO3 binary system[J]. J Hazard Mater, 2019,379:120805. doi: 10.1016/j.jhazmat.2019.120805
    [4] Xu Zhengzhen, Liang Jinglong, Li Hui, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Util Miner Resour, 2020,(3):8−13. (徐正震, 梁精龙, 李慧, 等. 含钒废弃物中钒的回收研究现状及展望[J]. 矿产综合利用, 2020,(3):8−13.

    Xu Z Z, Liang J L, Li H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes [J]. Multipurpose Util Miner Resour, 2020(3): 8.
    [5] Wu Enhui, Hou Jing, Li Jun. Experimental study on vanadium extraction from vanadium and chromium slag by oxidizing and calcifying roasting and acid leaching[J]. Rare Metals and Cemented Carbide, 2017,45(6):8−13. (吴恩辉, 侯静, 李军. 钒铬渣氧化钙化焙烧-酸浸提钒实验研究[J]. 稀有金属与硬质合金, 2017,45(6):8−13.

    Wu Enhui, Hou Jing, Li Jun. Experimental study on vanadium extraction from vanadium and chromium slag by oxidizing and calcifying roasting and acid leaching[J]. Rare Metals and Cemented Carbide, 2017, 45 (6): 8-13.
    [6] Xiao Xiudi, Zhang Hua, Chai Guanqi, et al. A cost-effective process to prepare VO2 (M) powder and films with superior thermochromic properties[J]. Materials Research Bulletin, 2014,51:6−12. doi: 10.1016/j.materresbull.2013.11.051
    [7] Johann Nathan Nicholas, Gabriel Da Silva, Sandra Kentish, et al. Use of vanadium (V) oxide as a catalyst for CO2 hydration in potassium carbonate systems[J]. Industrial & Engineering Chemistry Research, 2014,53:3029−3039.
    [8] Wu Gao, Pan Peng, Fan Helin, et al. Research status and development trend of vanadium extraction from vanadium slag[J]. Jiangxi Metallurgy, 2020,40(4):19−27. (吴诰, 潘鹏, 范鹤林, 等. 钒渣提钒研究现状及发展趋势[J]. 江西冶金, 2020,40(4):19−27.

    Wu Gao, Pan Peng, Fan Helin, et al. Research status and development trend of vanadium extraction from vanadium slag [J]. Jiangxi Metallurgy, 2020, 40 (4): 19-27.
    [9] Hong Ying, Guo Shuanghua, Li Yu, et al. Progress in vanadium extraction technology[J]. Guangzhou Chemical Industry, 2021,49(17):23−25. (洪颖, 郭双华, 李雨, 等. 提钒技术研究进展[J]. 广州化工, 2021,49(17):23−25. doi: 10.3969/j.issn.1001-9677.2021.17.008

    Hong Ying, Guo Shuanghua, Li Yu, et al. Progress in vanadium extraction technology [J]. Guangzhou Chemical Industry, 2021, 49 (17): 23-25. doi: 10.3969/j.issn.1001-9677.2021.17.008
    [10] Xie Yu, Ye Guohua, Zuo Qi, et al. Study on the new process of vanadium extraction from vanadium-bearing steel slag[J]. Iron Steel Vanadium Titanium, 2019,40(1):69−77. (谢禹, 叶国华, 左琪, 等. 含钒钢渣提钒新工艺研究[J]. 钢铁钒钛, 2019,40(1):69−77.

    Xie Yu, Ye Guohua, Zuo Qi, et al. Study on the new process of vanadium extraction from vanadium-bearing steel slag [J]. Iron Steel Vanadium Titanium, 2019, 40 (1): 69-77
    [11] Chen Dongli, Tang Cheng. Research on the influence of vanadium precipitation conditions on vanadium precipitation rate[J]. Equipment Manufacturing Technology, 2016,(1):260−262. (陈冬丽, 唐铖. 沉钒条件对沉钒率的影响研究[J]. 装备制造技术, 2016,(1):260−262. doi: 10.3969/j.issn.1672-545X.2016.01.087

    Chen Dongli, Tang Cheng. Research on the influence of vanadium precipitation conditions on vanadium precipitation rate [J]. Equipment Manufacturing Technology, 2016 (1): 260-262. doi: 10.3969/j.issn.1672-545X.2016.01.087
    [12] Zhang Juhua, Yan Zhefeng, Zhang Li. Influencing factors and kinetics of vanadium precipitation from calcified vanadium extraction solution[J]. Journal of Process Engineering, 2018,18(1):111−117. (张菊花, 严哲锋, 张力. 钙化提钒溶液沉钒的影响因素及沉钒动力学[J]. 过程工程学报, 2018,18(1):111−117.

    Zhang Juhua, Yan Zhefeng, Zhang Li. Influencing factors and kinetics of vanadium precipitation from calcified vanadium extraction solution [J]. Journal of Process Engineering, 2018, 18 (1): 111-117.
    [13] Zhang J H, Zhang W, Zhang L, et al. Mechanism of vanadium slag roasting with calcium oxide[J]. International Journal of Mineral Processing, 2015,138:20−29. doi: 10.1016/j.minpro.2015.03.007
    [14] Zhang J H, Zhang W, Xue Z L. Oxidation kinetics of vanadium slag roasting in the presence of calcium oxide[J]. Mineral Processing and Extractive Metallurgy Review, 2017,38(5):265−273. doi: 10.1080/08827508.2017.1289197
    [15] Liu H B, Du H, Wang D W, et al. Kinetics analysis of decomposition of vanadium slag by KOH sub-molten salt method[J]. Transactions of Nonferrous Metals Society of China, 2013,23(5):1489−1500. doi: 10.1016/S1003-6326(13)62621-7
    [16] Zhang G Q, Zhang T A, Li G Z, et al. Extraction of vanadium from LD converter slag by pressure leaching process with titanium white waste acid[J]. Rare Metal Materials Engineering, 2015,44(8):1894−1898. doi: 10.1016/S1875-5372(15)30120-X
    [17] Liu Z H, Li Y, Chen M L, et al. Enhanced leaching of vanadium slag in acidic solution by eletro-oxidation[J]. Hydrometallurgy, 2016,159:1−5.
    [18] Yu Tangxia, Wen Jing, Sun Hongyan, et al. Effect of phase structure of vanadium slag with different calcium content on vanadium extraction by calcification[J]. Iron Steel Vanadium Titanium, 2021,42(5):18−23. (余唐霞, 温婧, 孙红艳, 等. 不同钙含量钒渣的物相结构对钙化提钒的影响[J]. 钢铁钒钛, 2021,42(5):18−23.

    Yu Tangxia, Wen Jing, Sun Hongyan, et al. Effect of phase structure of vanadium slag with different calcium content on vanadium extraction by calcification [J] . Iron Steel Vanadium Titanium, 2021, 42 (5): 18-23.
    [19] Tao Changyuan, Yu Qiang, Liu Zuohua, et al. Directional conversion and removal of complex phosphorus compounds from acidic leaching solution containing vanadium[J]. Journal of Water Process Engineering, 2020,37:101−131.
    [20] Liu Hong, Zhang Yimin, Huang Jing. N235 supported liquid membrane separation of vanadium extraction from shale and mass transfer mechanism[J]. Chinese Journal of Nonferrous Metals, 2020,30(9):2216−2223. (刘红, 张一敏, 黄晶. N235支撑液膜分离页岩提钒酸浸液及传质机理[J]. 中国有色金属学报, 2020,30(9):2216−2223.

    Liu Hong, Zhang Yimin, Huang Jing. N235 supported liquid membrane separation of vanadium extraction from shale and mass transfer mechanism [J]. Chinese Journal of Nonferrous Metals, 2020, 30 (9): 2216-2223.
    [21] Selling A, Andersson I, Pettersson L, et al. Multicomponent polyanions. 47. The aqueous vanadophosphate system[J]. Inorganic Chemistry, 2002,33(14):3141−3150.
    [22] Zhang Weiguang, Zhang Ting,an, Lü Guozhi, et al. Thermodynamic study on the V(V)-P(V)-H2O system in acidic leaching solution of vanadium-bearing converter slag[J]. Separation & Purification Technology, 2019,218:164−172.
    [23] Zhang Weiguang, Zhang Ting'an, Sun Ying, et al. Thermodynamic analysis of vanadium extraction from acidic solution of phosphorus-sulfur-vanadium-water system[J]. Rare Metal Materials and Engineering, 2021,50(12):4265−4271. (张伟光, 张廷安, 孙颖, 等. 磷-硫-钒-水体系酸性溶液中钒的提取热力学分析[J]. 稀有金属材料与工程, 2021,50(12):4265−4271.

    Zhang Weiguang, Zhang Ting'an, Sun Ying, et al. Thermodynamic analysis of vanadium extraction from acidic solution of phosphorus-sulfur-vanadium-water system [J]. Rare Metal Materials and Engineering, 2021, 50 (12): 4265-4271.
    [24] Zhang J H, Zhang W, Zhang L, et al. A critical review of technology for selective recovery of vanadium from leaching solution in V2O5 production[J]. Solvent Extraction and Ion Exchange, 2014,32(3):221−248. doi: 10.1080/07366299.2013.877753
    [25] Zhang J H, Zhang W, Xue Z L. An environment-friendly process featuring calcified roasting and precipitation purification to prepare vanadium pentoxide from the converter vanadium slag[J]. Metals, 2018,9(1):103390.
    [26] 肖亮. 钒溶液沉钒工艺研究进展 [C]// 第三届钒产业先进技术研讨与交流会论文集. 西昌: 钒钛资源综合利用产业技术创新战略联盟, 钒钛资源综合利用国家重点实验室, 2015.

    Xiao Liang. Research progress of vanadium solution vanadium precipitation process [C]//Proceedings of the 3rd Vanadium Industry Advanced Technology Seminar and Exchange Conference. Xichang: Strategic Alliance for Technological Innovation of Vanadium and Titanium Resources Comprehensive Utilization Industry, State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, 2015.
    [27] 杨保祥, 何金勇, 张桂芳. 钒基材料制造[M]. 北京: 冶金工业出版社, 2014: 104.

    Yang Baoxiang, He Jinyong, Zhang Guifang. Vanadium-based material manufacturing[M]. Beijing: Metallurgical Industry Press, 2014: 104.
    [28] Murthy G V R, Reddy T S, Rao S B. Extraction and simultaneous spectro photometric determination of vanadium(IV) and vanadium(V) in admixture with 2-hydroxyacetophenone oxime[J]. Analyst, 1989,114(4):493. doi: 10.1039/an9891400493
    [29] Al Rawahi W A, Ward N I. Field-based application of developed solid phase extraction with inductively coupled plasma mass spectrometry for vanadium speciation analysis of groundwaters from Argentina[J]. Talanta, 2017,165:391−397. doi: 10.1016/j.talanta.2016.12.078
    [30] Jen J F, Wu M H, Yang T C. Simultaneous determination of vanadium(IV) and vanadium(V) as EDTA complexes by capillary zone electrophoresis - ScienceDirect[J]. Analytica Chimica Acta, 1997,339(3):251−257. doi: 10.1016/S0003-2670(96)00482-5
  • 加载中
图(14)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  6
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回