留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强β钛合金的研究现状与展望

王安东 相志磊 周宗熠 马小昭 韩竟俞 陈子勇

王安东, 相志磊, 周宗熠, 马小昭, 韩竟俞, 陈子勇. 高强β钛合金的研究现状与展望[J]. 钢铁钒钛, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007
引用本文: 王安东, 相志磊, 周宗熠, 马小昭, 韩竟俞, 陈子勇. 高强β钛合金的研究现状与展望[J]. 钢铁钒钛, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007
Wang Andong, Xiang Zhilei, Zhou Zongyi, Ma Xiaozhao, Han Jingyu, Chen Ziyong. Research status and prospect of high-strength β-titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007
Citation: Wang Andong, Xiang Zhilei, Zhou Zongyi, Ma Xiaozhao, Han Jingyu, Chen Ziyong. Research status and prospect of high-strength β-titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007

高强β钛合金的研究现状与展望

doi: 10.7513/j.issn.1004-7638.2023.06.007
基金项目: 国家自然科学基金项目(51871006)。
详细信息
    作者简介:

    王安东,1999年出生,男,山东聊城人,硕士研究生,研究方向:高强钛合金制备及加工工艺,E-mail:wang1807938507@163.com

    通讯作者:

    陈子勇,1966年出生,男,黑龙江人,博士,教授,研究方向:轻质耐高温难变形结构材料,超高强韧铝合金及其复合材料制备,E-mail:czy@bjut.edu.cn

  • 中图分类号: TF823,TG146.23

Research status and prospect of high-strength β-titanium alloy

  • 摘要: 对于钛合金来说,合金元素的种类以及含量对合金性能有很大的影响。而对于β钛合金,主要问题是如何选择β稳定元素以及控制β稳定元素的添加量。综述了不同合金元素对β钛合金的影响,并总结了国内外高强β钛合金的发展过程及现状。重点介绍了美国的Ti-1023、β21-S和俄罗斯的BT22、Ti-5553以及中国的Ti-5523合金。此外,从添加小尺寸间隙元素来控制合金相的大小、形态及种类的角度,对提升β钛合金强度进行了展望,以期使β钛合金的强度进一步提高。最后总结了β钛合金发展过程中遇到的困难及β钛合金可能的发展方向。
  • 图  1  β稳定元素的分类[13]

    Figure  1.  Classification of β-stablilizers elements

    图  2  几种常见β钛合金的钼当量[7]

    Figure  2.  Mo equivalents of several common β-titanium alloys

    图  3  (a)Ti-24Nb; (b)Ti-24Nb-0.5N的XRD谱[58]

    Figure  3.  XRD patterns of (a) Ti-24Nb and (b) Ti-24Nb-0.5N

    图  4  固溶处理的 (a)Ti-24Nb; (b)Ti-24Nb-0.5N的光学显微照片[59]

    Figure  4.  Optical micrographs of the solution-treated Ti–24Nb (a) and Ti–24Nb–0.5N (b) alloys

    表  1  国内外研究的部分高强β钛合金[26]

    Table  1.   Some β-titanium alloys developed by China and foreign countries

    类别商用名称成分研制国家钼当量应用
    Ti-16-2Ti-16V-2.5Al美国8.4高强、中温
    BT22Ti-5A1-5Mo-5V-1Cr-1Fe前苏联8.0高强锻件
    近β钛合金BT30Ti-11V-4Zr-6Sn前苏联7.4发动机
    SP-700Ti-5A1-3V-2Mo-2Fe日本5.3超塑成形
    TC6Ti-3A1-6V-5Mo-11Cr前苏联21.6弹性元件
    BT15Ti-3A1-7V-11Cr前苏联21.6弹性元件
    Ti-1-8-5Ti-1A1-8V-5Fe美国19紧固件
    TB2Ti-5Mo-5V-8Cr-3Al中国18.2紧固件
    TMZFTi-12Mo-6Zr-2Fe美国18矫形植入件
    亚稳β钛合金β-CTi-3A1-8V-6Cr-4Mo-4Zr美国16结构件
    IMI-205Ti-15Mo英国15耐蚀合金
    Ti-8-8-2-3Ti-8V-8Mo-2Fe-3Al美国15高强锻件
    BT3Ti-10Mo-8V-1Fe-3.5Al中国13.9紧固件
    BT4Ti-4Al-7Mo-10V-2Fe-1Zr中国13.7紧固件
    Ti-15-3Ti-15V-3Cr-3Sn-3Al美国12板材、骨架
    Alloy CTi-35V-15Cr美国47阻燃合金
    稳定β钛合金Ti-40Mo美国40阻燃合金
    Ti40Ti-25V-15Cr-0.2Si中国40阻燃合金
    下载: 导出CSV

    表  2  不同热处理条件下β-21S合金的力学性能[32]

    Table  2.   Mechanical properties of β-21S alloy under different heat treatment conditions

    时效制度性能
    温度/ ℃时间/h加热速率/ (K·s−1σb/MPaσ0.2/MPa
    δ/%Ψ/%
    50080.251 4001 3404.825
    52080.251 4891 4358.539
    52080.031 5601 5473.827
    520160.251 5331 48110.048
    53880.251 3881 33411.246
    工艺C工艺C0.251 6201 5709.838
    注:工艺C指300 ℃,8 h+500 ℃,8 h时效。
    下载: 导出CSV

    表  3  BT22时效处理后的力学性能[36]

    Table  3.   Mechanical properties of BT22 after aging treatment

    时效制度σb/MPaσ0.2/MPaδ/%Ψ/%
    温度/ ℃时间/h
    65001009±131103±305.826±4
    65011120±151194±2410.144±5
    65021165±191243±268.551±6
    65041219±221278±297.156±6
    65081247±181298±166.862±4
    下载: 导出CSV

    表  4  美国和俄罗斯主要高强β钛合金的力学性能[7]

    Table  4.   Mechanical properties of some high-strength β-titanium alloys from USA and Russia

    合金牌号合金成分热处理工艺σ/MPa[Mo]eq
    BT22MTi-5Al-5Mo-1V-1Cr-1Fe-1.5Sn-2Zr退火1 2009.4
    βCEZTi-5Al-4Mo-2Cr-1.2Fe-2Sn-4Zr淬火+时效1 5069.7
    Ti-17Ti-5A1-2Sn-4Mo-4Cr-2Zr退火1 16010.7
    Ti-5A1-2Sn-4Mo-4Cr-2Zr淬火+时效1 300
    βⅢTi-11.5Mo-6Zr-4.5Sn淬火+时效1 41311.5
    Ti-1023Ti-10V-2Fe-3Al淬火+时效1 27511.1
    Ti-55531Ti-5A1-5V-5Mo-3Cr-1Zr淬火+时效1 37013.1
    Ti-2041Ti-4A1-20V-1Sn淬火+时效1 53014.3
    Ti-15-3Ti-15V-3Al-3Cr-3Sn淬火+时效1 47515.7
    BT35Ti-15V-3Cr-3A1-3Sn-1Zr-1Mo淬火+时效1 27516.7
    下载: 导出CSV

    表  5  中国部分高强β钛合金的力学性能

    Table  5.   Mechanical properties of some high-strength β-titanium alloys in China

    合金牌号合金成分热处理工艺σ/MPa应用
    TB15Ti-4A1-5Mo-5V-6Cr固溶+时效1 350高强度组件
    Ti-7333Ti-7Mo-3Al-3Cr-3Nb固溶+时效1 350高强度组件
    M28Ti-4A1-5V-5Mo-6Cr-1Nb固溶+时效1 350高强度组件
    TB17Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-1Sn固溶+时效1 350高强度组件
    TB19Ti-3A1-5Mo-5V-4Cr-2Zr固溶+时效1 200高强度耐腐蚀件
    TB20Ti-3.5A1-5Mo-4V-2Cr-2Zr-2Sn-1Fe固溶+时效1 300高强度组件
    下载: 导出CSV
  • [1] Li Yi, Zhao Yongqing, Zeng Weidong. Application and development of aerial titanium alloys[J]. Materials Reports, 2020,34(S1):280−282. (李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(S1):280−282.

    Li Yi , Zhao Yongqing , Zeng Weidong . Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282.
    [2] Rrka B, Rkg C, As B, et al. Vacuum diffusion bonding of α titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics[J]. Materials Characterization, 2021,183:111607.
    [3] Nabhani F. Machining of aerospace titanium alloys[J]. Robotics & Computer Integrated Manufacturing, 2001,17(1-2):99−106.
    [4] Li L C, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. Journal of Alloys and Compounds, 2013,550:23−30. doi: 10.1016/j.jallcom.2012.09.140
    [5] Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys & Compounds, 2008,457(1-2):296−309.
    [6] Ivasishin O M, Markovsky R, Semiatin S L, et al. Aging response of coarse- and fine-grained β titanium alloys[J]. Materials Science & Engineering A, 2005,405(1/2):296−305.
    [7] Wang Dingchun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1):958−963. (王鼎春. 高强钛合金的发展与应用[J]. 中国有色金属学报, 2010,20(S1):958−963. doi: 10.19476/j.ysxb.1004.0609.2010.s1.206

    Wang Dingchun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 958-963. doi: 10.19476/j.ysxb.1004.0609.2010.s1.206
    [8] Pallavi Pushp, Dasharath S M, Arati C. Classification and applications of titanium and its alloys - ScienceDirect[J]. Materials Today:Proceedings, 2022,54(2):537−542.
    [9] Zhang Pingping, Wang Qingjuan, Gao Qi, et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012,41(14):51−55. (张平平, 王庆娟, 高颀, 等. 高强β钛合金研究和应用现状[J]. 热加工工艺, 2012,41(14):51−55. doi: 10.3969/j.issn.1001-3814.2012.14.014

    Zhang Pingping , Wang Qingjuan , Gao Qin , et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012, 41(14): 51-55. doi: 10.3969/j.issn.1001-3814.2012.14.014
    [10] Dipankar, Banerjee, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61:844−879. doi: 10.1016/j.actamat.2012.10.043
    [11] Bania P J. Beta titanium alloys and their role in the titanium industry[J]. Journal of the Minerals, Metals & Materials Society, 1994, 46: 16-19.
    [12] Min X, Emura S, Ling Z, et al. Improvement of strength–ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase[J]. Materials Science & Engineering A, 2015,646(14):279−287.
    [13] 闫平. BT22高强度铸造钛合金组织与性能的研究[D]. 北京: 机械科学研究总院, 2007.

    Yan Ping . Study on microstructures and mechanical properties of high-strength BT22 cast titanium alloy[D]. Beijing: China Academy of Machinery Science and Technology Group, 2007.
    [14] Dipankar Banerjee, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3): 844-879.
    [15] 张翥, 王群骄, 莫畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009.

    Zhang Zhu, Wang Qunjiao, Mo Wei. Metallogy and heat treatmen of titanium[M]. Beijing: Metallurgical Industry Press, 2009.
    [16] 赵永庆. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.

    Zhao Yongqing. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Central South University Press, 2012 .
    [17] Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996,213(1-2):103−114. doi: 10.1016/0921-5093(96)10233-1
    [18] Fujishiro S , Eylon D , Kishi T . Metallurgy and technology of practical titanium alloys[M]. USA: TMS, 1994.
    [19] Wen Jianhong, Yang Guanjun, Ge Peng,et al. The research progress of β titanium alloys[J]. Titanium Industry Progress, 2008,(1):33−39. (汶建宏, 杨冠军, 葛鹏, 等. β钛合金的研究进展[J]. 钛工业进展, 2008,(1):33−39. doi: 10.3969/j.issn.1009-9964.2008.01.008

    Wen Jianhong , Yang Guanjun , Ge Peng . The research progress of β titanium alloys[J]. Titanium Industry Progress, 2008(1): 33-39. doi: 10.3969/j.issn.1009-9964.2008.01.008
    [20] Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—an overview[J]. Materials Science & Engineering A, 1998,243(1-2):46−65.
    [21] Wang Guangrong, Gao Qi, Liu Jixiong, et al. Composition design of beta-titanium alloys: Theoretical, methodological and practical advances[J]. Materials Reports, 2017,31(3):44−51. (王光荣, 高颀, 刘继雄, 等. β钛合金成分设计: 理论、方法、实践[J]. 材料导报, 2017,31(3):44−51.

    Wang Guangrong , Gao Qin , Liu Jiwei , et al. Composition design of beta-titanium alloys: Theoretical, methodological and practical advances[J]. Materials Reports, 2017, 31(3): 44-51.
    [22] 杜赵新. 新型高强β钛合金的热处理和微合金化以及高温变形行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Du Zhaoxin . Heat treatment and microalloying and high temperature deformation behavior of new high strength titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014.
    [23] Cui Y J, Aoyagi K, Koizumi Y, et al. Effect of niobium addition on tensile properties and oxidation resistance of a titanium-based alloy[J]. Corrosion Science, 2020,180:109198.
    [24] Wu Huan, Zhao Yongqing, Ge Peng, et al. Effect of β stabilizing elements on the strengthening behavior of titanium a phase[J]. Rare Metal Materials and Engineering, 2012,41(5):805−810. (吴欢, 赵永庆, 葛鹏, 等. β稳定元素对钛合金α相强化行为的影响[J]. 稀有金属材料与工程, 2012,41(5):805−810. doi: 10.3969/j.issn.1002-185X.2012.05.012

    Wu Huan , Zhao Yongqing, Ge Peng , et al. Effect of β stabilizing elements on the strengthening behavior of titanium a phase[J]. Rare Metal Materials and Engineering, 2012, 41(5): 805-810 . doi: 10.3969/j.issn.1002-185X.2012.05.012
    [25] Zhao Y, Liu J, Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Materials and Engineering, 2005,34(4):531−538.
    [26] Wu Xiaodong, Yang Guanjun, Ge Peng, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008,(5):1−6. (吴晓东, 杨冠军, 葛鹏, 等. β钛合金及其固态相变的归纳[J]. 钛工业进展, 2008,(5):1−6. doi: 10.3969/j.issn.1009-9964.2008.05.001

    Wu Xiaodong, Yang Guanjun , Ge Peng, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008(5): 1-6 . doi: 10.3969/j.issn.1009-9964.2008.05.001
    [27] Boyer, Rodney R. Design properties of a high-strength titanium alloy Ti-10V-2Fe-3Al[J]. JOM, 1980,32(3):61−65. doi: 10.1007/BF03354557
    [28] Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000,(3):218−223. (钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属, 2000,(3):218−223. doi: 10.3969/j.issn.0258-7076.2000.03.012

    Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000(3): 218-223. doi: 10.3969/j.issn.0258-7076.2000.03.012
    [29] Chen C C, Boyer R R. Practical considerations for manufacturing high-strength Ti-10V-2Fe-3A1 alloy forgings[J]. JOM, 1979,31(7):33−39. doi: 10.1007/BF03354533
    [30] Gerhard W, Boyer R R, Collings E W. Materials properties handbook: Titanium alloys[M]. USA: Materials Park, OH : ASM International, 1994.
    [31] Zhao Q Y, Sun Q Y, Xin S W, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering:A, 2022,845:143260. doi: 10.1016/j.msea.2022.143260
    [32] Sansoz F, Almesallmy M, Ghonem H. Ductility exhaustion mechanisms in thermally exposed thin sheets of a near-β titanium alloy[J]. Metallurgical & Materials Transactions A, 2004,35(10):3113−3127.
    [33] Boyer R R. Aerospace applications of beta titanium alloys[J]. JOM, 1994,46(7):20−23. doi: 10.1007/BF03220743
    [34] Qiu D, Zhang M, Kelly P, et al. Discovery of plate-shaped athermal ω phase forming pairs with α′ martensite in a Ti–5.26%Cr alloy[J]. Scripta Materialia, 2013,69(10):752−755. doi: 10.1016/j.scriptamat.2013.08.020
    [35] Zhao Hongxia, Yu Wenjun. Development and application of high strength titanium alloy BT22 in aviation industry[J]. Aeronautical Manufacturing Technology, 2010,(1):85−86, 90. (赵红霞, 虞文军. 航空用高强度BT22钛合金的研发和应用[J]. 航空制造技术, 2010,(1):85−86, 90. doi: 10.3969/j.issn.1671-833X.2010.01.017

    Zhao H X , Yu W J . Development and application of high strength titanium alloy BT22 in aviation industry[J]. Aeronautical Manufacturing Technology, 2010(1): 85-86, 90. doi: 10.3969/j.issn.1671-833X.2010.01.017
    [36] Jones N G, Dashwood R J, Dye D, et al. The flow behavior and microstructural evolution of Ti-5Al-5Mo-5V-3Cr during subtransus isothermal forging[J]. Metallurgical and Materials Transactions A, 2009,40(8):1944−1954. doi: 10.1007/s11661-009-9866-5
    [37] 李秀广. 热处理对高强β钛合金板材组织及性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Li Xiuguang. Effect of heat treatment on microstructure and mechanical properties of high strength β titanium alloy sheets[D]. Harbin: Harbin Institute of Technology, 2016 .
    [38] 陈兆琦. 高强β钛合金高温变形行为及板材组织性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    Chen Zhaoqi. High temperature deformation behavior and sheet microstructure and properties of high strength β titanium alloy[D]. Harbin: Harbin Institute of Technology, 2021.
    [39] Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy Ti–5Al–5V–5Mo–3Cr[J]. Materials and Design, 2015,66:596−610. doi: 10.1016/j.matdes.2014.04.015
    [40] None. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering & Performance, 2013,22(10):2916−2920.
    [41] Cotton J D, Briggs R D, Boyer R R, et al. State of the art in beta titanium alloys for airframe applications[J]. JOM, 2015,67(6):1281−1303. doi: 10.1007/s11837-015-1442-4
    [42] 杨建辉. 锻态β钛合金组织性能及热变形行为的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Yang Jianhui. Research on microstructure and microstructure properties and hot deformation behavior of wrought as-forged beta titanium alloy[D]. Harbin: Harbin Institute of Technology, 2016.
    [43] Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011,35(4):575−580. (杨冬雨, 付艳艳, 惠松骁, 等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011,35(4):575−580. doi: 10.3969/j.issn.0258-7076.2011.04.017

    Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011, 35(4): 575-580. doi: 10.3969/j.issn.0258-7076.2011.04.017
    [44] Liu Rui , Hui Songxiao , Ye Wenjun , et al. Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2010,34(4):485−490. (刘睿, 惠松骁, 叶文君, 等. 热处理工艺对TB10钛合金动态断裂韧性的影响[J]. 稀有金属, 2010,34(4):485−490. doi: 10.3969/j.issn.0258-7076.2010.04.003

    Liu Rui , Hui Songxiao , Ye Wenjun , et al. Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2010,34(4): 485-490. doi: 10.3969/j.issn.0258-7076.2010.04.003
    [45] Zhao Xiaolong, Wang Xiaoxiang, Wang Xin. Effect of deformation and heat treatment on micro-structures and mechanical properties of cold rolled BTi-6554 alloy sheets[J]. Southern Metals, 2015,(5):5−7. (赵小龙, 王小翔, 王新. 变型量和热处理对BTi-6554钛合金冷轧板材组织和性能的影响[J]. 南方金属, 2015,(5):5−7. doi: 10.3969/j.issn.1009-9700.2015.05.002

    Zhao X L , Wang X X, Wang X . Effect of deformation and heat treatment on micro-structures and mechanical properties of cold rolled BTi-6554 alloy sheets[J]. Southern Metals, 2015(5): 5-7 . doi: 10.3969/j.issn.1009-9700.2015.05.002
    [46] Conrad Hans. Effect of interstitial solutes on the strength and ductility of titanium[J]. Progress in Materials Science, 1981, 26(2-4):123-403.
    [47] Xin Ji, Satoshi Emura, Liu Tianwei, et al. Effect of oxygen addition on microstructures and mechanical properties of Ti-7.5Mo alloy[J]. Journal of Alloys & Compounds, 2018,737:221−229.
    [48] Min X H, Emura S, Tsuchiya K, et al. Transition of multi-deformation modes in Ti–10Mo alloy with oxygen addition[J]. Materials Science and Engineering A, 2014,590:88−96. doi: 10.1016/j.msea.2013.10.010
    [49] Min X, Bai P, Emura S, et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy[J]. Materials Science & Engineering A, 2016,684:534−541.
    [50] Lan Chunbo, Chen Feng , Chen Huijuan, et al. Influence of oxygen content on the microstructure and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn-xO alloys after aging treatment[J]. Journal of Materials Science & Technology, 2018,34(11):134−140.
    [51] Furuta T, Kuramoto S, Hwang J, et al. Mechanical properties and phase stability of Ti-Nb-Ta-Zr-O alloys[J]. Materials Transactions, 2007,48(5):1124−1130. doi: 10.2320/matertrans.48.1124
    [52] Duan H P, Xu H X, Su W H, et al. Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy[J]. International Journal of Minerals Metallurgy & Materials, 2012,19(12):6.
    [53] Niinomi Mitsuo,Nakai Masaaki, Hendrickson , et al. Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy[J]. Scripta Materialia, 2016,123:144−148. doi: 10.1016/j.scriptamat.2016.06.027
    [54] Pinotti V E, Plaine A H, Silva M, et al. Influence of oxygen addition and aging on the microstructure and mechanical properties of a β-Ti-29Nb–13Ta–4Mo alloy[J]. Materials Science and Engineering A, 2021,819(18):141500.
    [55] Chen X, Chen S, Jiang Y, et al. Minocycline reduces oxygen–glucose deprivation-induced PC12 cell cytotoxicity via matrix metalloproteinase-9, integrin β1 and phosphorylated Akt modulation[J]. Neurological Sciences, 2013,34(8):1391−1396. doi: 10.1007/s10072-012-1246-z
    [56] Hennig R G , Trinkle D R , Bouchet J , et al. Impurities block the α to ω martensitic transformation in titanium[J]. Nature Materials, 2005,4:129-133.
    [57] Furuhara T, Annaka S, Tomio Y, et al. Superelasticity in Ti–10V–2Fe–3Al alloys with nitrogen addition[J]. Materials Science & Engineering A, 2006,438:825−829.
    [58] Ramarolahy A, Philippe Castany, Frédéric Prima, et al. Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012,9(9):83−90.
    [59] Xiu S, Lei W, Niinomi M, et al. Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO2 additions[J]. Materials Science and Engineering A, 2014,619:112−118. doi: 10.1016/j.msea.2014.09.069
    [60] Blenkinsop P A, Jones I P. Effects of boron, carbon, and silicon additions on microstructure and properties of a Ti–15Mo based beta titanium alloy[J]. Materials Science & Technology, 2001,17(5):573−580.
    [61] Banoth R, Sarkar R, Bhattacharjee A, et al. Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys[J]. Materials & Design, 2015,67:50−63.
    [62] Gao K W, Nakamura M. Microstructures and hydrogen embrittlement of Ti–49Al alloy[J]. Intermetallics, 2000,8(5):595−597.
    [63] Briant C L, Wang Z F, Chollocoop N. Hydrogen embrittlement of commercial purity titanium[J]. Corrosion Science, 2002,44(8):1875−1888.
    [64] Alvarez A M, Robertson I M, Birnbaum H K. Hydrogen embrittlement of a metastable β-titanium alloy[J]. Acta Materialia, 2004,52(14):4161−4175. doi: 10.1016/j.actamat.2004.05.030
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  37
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-14
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回