留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空电磁定向凝固制备高纯TiSi2和共晶Si-Ti合金的研究

张亚坤 雷云 马文会

张亚坤, 雷云, 马文会. 真空电磁定向凝固制备高纯TiSi2和共晶Si-Ti合金的研究[J]. 钢铁钒钛, 2023, 44(6): 58-63. doi: 10.7513/j.issn.1004-7638.2023.06.008
引用本文: 张亚坤, 雷云, 马文会. 真空电磁定向凝固制备高纯TiSi2和共晶Si-Ti合金的研究[J]. 钢铁钒钛, 2023, 44(6): 58-63. doi: 10.7513/j.issn.1004-7638.2023.06.008
Zhang Yakun, Lei Yun, Ma Wenhui. Preparation of high-purity TiSi2 and eutectic Si-Ti alloys by vacuum electromagnetic directional solidification[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 58-63. doi: 10.7513/j.issn.1004-7638.2023.06.008
Citation: Zhang Yakun, Lei Yun, Ma Wenhui. Preparation of high-purity TiSi2 and eutectic Si-Ti alloys by vacuum electromagnetic directional solidification[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 58-63. doi: 10.7513/j.issn.1004-7638.2023.06.008

真空电磁定向凝固制备高纯TiSi2和共晶Si-Ti合金的研究

doi: 10.7513/j.issn.1004-7638.2023.06.008
基金项目: 国家自然科学基金项目(U1702251);云南省科技重大专项(No. 202202AG050007)。
详细信息
    作者简介:

    张亚坤,1995年出生,男,云南保山人,博士,主要从事硅材料分离提纯、硅基功能材料制备及钛硅资源回收等方面研究,E-mail:yakunzhang_kust@163.com

    通讯作者:

    马文会,1973年出生,男,四川西充人,博士,教授,主要从事有色金属冶金、工业硅生产、晶硅制备新技术及新能源材料制备等领域研究,E-mail:mwhsilicon@126.com

  • 中图分类号: TF133,TF823

Preparation of high-purity TiSi2 and eutectic Si-Ti alloys by vacuum electromagnetic directional solidification

  • 摘要: 为了制备高纯TiSi2和共晶Si-Ti合金,研究新采用真空电磁定向凝固技术对Ti-Si合金进行了相分离与提纯。结果表明,真空电磁定向凝固技术可以有效地提纯Ti-Si合金;Fe、Mn和Al杂质通过其在固-液界面上的分凝效应去除(富集在顶部);Ca和Mg杂质由于蒸气压明显高于Si和Ti,因此可以通过真空挥发去除。Ti-56%Si合金(纯度96%)经真空电磁定向凝固后,在坩埚下部分离得到致密的TiSi2合金,而上部则分离得到物相均匀的共晶Si-Ti合金。由此制备的TiSi2纯度达到99.4%,共晶Si-Ti合金纯度达到99.1%(仅考虑主要杂质Fe、Mn、Ca、Mg和Al条件下)。
  • 图  1  真空电磁定向凝固炉

    Figure  1.  Vacuum electromagnetic directional solidification furnace

    图  2  Ti-56%Si合金真空电磁定向凝固后,(a)合金纵截面的宏观图像和(b)~(g)合金在纵向位置的微观结构分析

    Figure  2.  (a) Macroscopic image of the longitudinal section of the alloy and (b)~(g) microstructure analysis of alloys in the longitudinal position after vacuum electromagnetic directional solidification

    图  3  Ti-Si二元合金相图[14]和原始Ti-56%Si合金的析晶路径

    Figure  3.  Ti–Si binary alloy phase diagram and precipitation path of the Ti-56%Si alloy

    图  4  (a)电磁力促进凝固晶体分离的机制,(b)电磁定向凝固分离与提纯Ti-Si合金的全过程图解

    Figure  4.  (a) Mechanism of electromagnetic force promoting the separation of solidified crystals, (b) and (c) illustration of the whole process of electromagnetic directional solidification separation and purification of Ti-Si alloy

    图  5  (a)Ti-Si合金试样被切成五等份进行ICP-OES分析;(b)Ti-Si合金试样从底部到顶部的杂质分布

    Figure  5.  (a) ICP-OES analysis of the Ti–Si alloy cut into five equal parts, (b) impurity distributions of the Ti–Si alloy from the bottom to the top

    图  6  Ti、Si、Fe、Mn、Ca、Mg和Al元素在不同温度下的蒸气压

    Figure  6.  Vapor pressures of Ti, Si, Fe, Mn, Ca, Mg, and Al elements at different temperatures

    图  7  真空电磁定向凝固制备高纯TiSi2和共晶Si-Ti合金技术流程

    Figure  7.  New green process for the preparation of high-purity TiSi2 and eutectic Si-Ti alloys by vacuum electromagnetic directional solidification

    表  1  低纯Ti-Si合金中的主要杂质及其含量

    Table  1.   Main impurities and their contents of the low purity Ti-Si alloys %

    FeMnCaMgAl
    2.430.810.180.210.13
    下载: 导出CSV

    表  2  不同温度下,Al、Fe、Mn、Ni、Cu、Ca和Mg在TiSi2固相中的平衡分凝系数(近似值)[15]

    Table  2.   Equilibrium coefficient segregation (approximate values) of Al, Fe, Mn, Ni, Cu, Ca, and Mg in TiSi2 solid phase at different temperatures

    温度/K$ k $(近似)
    Al16530.1
    Fe1703<1
    Mn16530.07
    Ni17330.06
    Cu16530.08
    Ca1653<1
    Mg1653<1
    下载: 导出CSV
  • [1] Melsheimer S, Fietzek M, Kolarik V, et al. Oxidation of the intermetallics MoSi2 and TiSi2—A comparison[J]. Oxidation of Metals, 1997,47:139−203. doi: 10.1007/BF01682375
    [2] Frommeyer G, Rosenkranz R. Structures and properties of the refractory silicides Ti5Si3 and TiSi2 and Ti-Si-(Al) eutectic alloys[J]. Metallic Materials with High Structural Efficiency, 2004,146:287−308.
    [3] Ting C Y, Heurle F M, Iyer S S, et al. High temperature process limitation on TiSi2[J]. Journal of the Electrochemical Society, 1986,133(12):2621−2625. doi: 10.1149/1.2108491
    [4] Milanese C, Buscaglia V, Maglia F, et al. Reactive growth of niobium silicides in bulk diffusion couples[J]. Acta Mater, 2013,51:4837−4846.
    [5] Wen Q, Zhong Z, Yang A, et al. Effect of adding of SiC particulate on the microstructure and shear strength of SiC ceramic joint brazed with Si-24Ti alloy[J]. Journal of Adhesion Science & Technology, 2018: 1−13.
    [6] Zhou S, Liu X, Wang D. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries[J]. Nano Letter, 2010,10(3):860−863. doi: 10.1021/nl903345f
    [7] Trambukis J, Munir Z A. Effect of particle dispersion on the mechanism of combustion synthesis of titanium silicide[J]. Journal of the American Ceramic Society, 2010, 73: 1240−1245.
    [8] Agarwal S, Cotts E J, Zarembo S, et al. The heat capacities of titanium silicides Ti5Si3, TiSi and TiSi2[J]. Journal of Alloys and Compounds, 2001,314(1-2):100−102.
    [9] Lee Y, Lee S. Phase formation during mechanical alloying in the Ti–Si system[J], Materials Science and Engineering: A, 2007, 449: 1099–1101.
    [10] Fouad O A, Yamazato M, Hiroshi A, et al. Formation of titanium silicide thin films on Si (100) substrate by RF plasma CVD[J]. Surface and Coatings Technology, 2003,169:632−635.
    [11] Yu W, Xue Y, Mei J, et al. Segregation and removal of transition metal impurities during the directional solidification refining of silicon with Al-Si solvent[J]. Journal of Alloys and Compounds, 2019,805:198−204. doi: 10.1016/j.jallcom.2019.07.089
    [12] Ma X D, Yoshikawa T, Morita K. Si growth by directional solidification of Si-Sn alloys to produce solar-grade Si[J]. Journal of Crystal Growth, 2013,377:192−196. doi: 10.1016/j.jcrysgro.2013.05.024
    [13] Koyama T, Ike D M, Shibuta Y. Silicon crystal pulling from the melt of Si-45mass%Ni alloy[J]. ISIJ International, 2008,94:496−501.
    [14] Massalski T B. Binary alloy phase diagrams[M]. Ohio: 2nd edition, ASM International, Metals Park, 1990.
    [15] 张亚坤. 工业废料再生制备Ti5Si3、TiSi2和低铁Al-Si合金的研究[D]. 昆明: 昆明理工大学. 2023.

    Zhang Yakun. Study on the preparation of Ti5Si3, TiSi2, and low-Fe Al-Si alloys by regeneration of industrial wastes [D]. Kunning: Kunming University of Science and Technology. 2023.
    [16] Kubaschewski O, Alcock C B. Metallurgical thermochemistry [M]. Oxford: Pergamon Press, 1979.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  14
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-04
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回