留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-Al-Mo-V-Cr系新型高强耐磨β钛合金热变形与热处理研究

岳颗 孙迎军 彭力 林崇智

岳颗, 孙迎军, 彭力, 林崇智. Ti-Al-Mo-V-Cr系新型高强耐磨β钛合金热变形与热处理研究[J]. 钢铁钒钛, 2023, 44(6): 64-69. doi: 10.7513/j.issn.1004-7638.2023.06.009
引用本文: 岳颗, 孙迎军, 彭力, 林崇智. Ti-Al-Mo-V-Cr系新型高强耐磨β钛合金热变形与热处理研究[J]. 钢铁钒钛, 2023, 44(6): 64-69. doi: 10.7513/j.issn.1004-7638.2023.06.009
Yue Ke, Sun Yingjun, Peng Li, Lin Chongzhi. Study on hot deformation and heat treatment of a novel series of high strength and wear resistance β titanium Ti-Al-Mo-V-Cr alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 64-69. doi: 10.7513/j.issn.1004-7638.2023.06.009
Citation: Yue Ke, Sun Yingjun, Peng Li, Lin Chongzhi. Study on hot deformation and heat treatment of a novel series of high strength and wear resistance β titanium Ti-Al-Mo-V-Cr alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 64-69. doi: 10.7513/j.issn.1004-7638.2023.06.009

Ti-Al-Mo-V-Cr系新型高强耐磨β钛合金热变形与热处理研究

doi: 10.7513/j.issn.1004-7638.2023.06.009
详细信息
    作者简介:

    岳颗,男,1990年出生,博士,研究员,主要从事钛合金热加工工艺、钛合金组织演变与力学性能研究,E-mail:yjyyueke@pzhsteel.com.cn

  • 中图分类号: TF823

Study on hot deformation and heat treatment of a novel series of high strength and wear resistance β titanium Ti-Al-Mo-V-Cr alloy

  • 摘要: 以Ti-Al-Mo-V-Cr系高强耐磨新型β钛合金为试验对象,研究了该新型β钛合金在不同变形条件下的热变形行为,分析了热处理工艺对新型β钛合金板材力学性能和显微组织的影响。结果表明,热压缩试验中变形速率越低,变形温度越高,合金热变形抗力就越小;再结晶晶粒数量随变形速率的降低而明显增加,再结晶晶粒尺寸随变形温度的降低而明显减小。热处理试验中采用合适的热处理工艺有效改善了冷轧板材的组织和力学性能,低温时效与高温退火工艺可以使板材的抗拉强度分别达到1686 MPa与1569 MPa,洛氏硬度(HRC)均保持在50以上。
  • 图  1  经三次真空自耗熔炼的Ø300 mm新型β钛合金铸锭

    Figure  1.  The image of a novel β titanium alloy ingot with the diameter of 300 mm after three times of vacuum consumable electrode remelting

    图  2  新合金在不同应变速率条件下的真应力-真应变曲线

    Figure  2.  True stress- strain curves for the novel β titanium alloy with different strain rates

    (a)0.01 s−1;(b)0.1 s−1;(c)1 s−1;(d)10 s−1

    图  3  不同变形温度下,应变速率10 s−1热压缩后的显微组织

    Figure  3.  The microstructures of the sample under the strain rate of 10 s−1 deformed at different temperatures

    (a) 800 ℃;(b) 840 ℃; (c) 880 ℃; (d) 920 ℃

    图  4  不同变形温度下,应变速率1 s−1热压缩后的显微组织

    Figure  4.  The microstructures of the sample under the strain rate of 1 s−1 deformed at different temperatures

    (a) 800 ℃; (b) 840 ℃;(c) 880 ℃; (d) 920 ℃

    图  5  不同温度和应变速率条件下,变形后的微观组织照片

    Figure  5.  The microstructures of the sample at varying strain rates and temperatures

    (a) 920 ℃,$ \dot{\mathrm{\varepsilon }}=0.1 $ s−1; (b) 920 ℃,$ \dot{\mathrm{\varepsilon }}=1 $ s−1; (c) 800 ℃,$\dot{\mathrm{\varepsilon }}=0.1$ s−1; (d) 800 ℃, $ \dot{\mathrm{\varepsilon }}=1 $ s−1

    图  6  不同放大倍数下,厚度为3 mm的冷轧板低温时效后的微观组织

    时效温度:(a1)、(a2)350 ℃;(b1)、(b2)400 ℃;(c1)、(c2)450 ℃

    Figure  6.  The low-temperature aged microstructures of the cold rolled sheet with the thickness of 3 mm

    图  7  不同放大倍数下,厚度为4 mm的冷轧板高温退火后的微观组织

    退火温度:(a1)、(a2)730 ℃;(b1)、(b2):740 ℃;(c1)、(c2)750 ℃

    Figure  7.  The annealed microstructures of the cold rolled sheet with the thickness of 4 mm

    表  1  冷轧板热处理工艺参数及性能测试项

    Table  1.   The heat treatment process parameters and performance test items of cold rolled sheet

    编号厚度尺
    寸/mm
    热处理
    温度/ ℃
    保温
    时间/h
    冷却
    方式
    测试
    项目
    A1335024空冷HRC
    A2340024空冷HRC+室温拉伸
    A3345024空冷HRC+室温拉伸
    B147300.33水冷HRC
    B247400.33水冷HRC+室温拉伸
    B347500.33水冷HRC+室温拉伸
    下载: 导出CSV

    表  2  冷轧板低温时效与高温退火后的力学性能

    Table  2.   Mechanical properties of the cold rolled sheet after heat treatment

    编号板厚/mmRm/MPaA/%硬度(HRC)
    A1316213.250.4
    A2316592.550.2
    A3316861.550.4
    B141562≤1.050.4
    B241569≤1.050.4
    B341549≤1.050.1
    下载: 导出CSV
  • [1] Zhao Yongqing, Ma Chaoli, Chang Hui, et al. New high strength and high toughness titanium alloy with 1200 MPa[J]. Materials China, 2016,35(12):914−918. (赵永庆, 马朝利, 常辉, 等. 1200 MPa级新型高强韧钛合金[J]. 中国材料进展, 2016,35(12):914−918.

    Zhao Yongqing, Ma Chaoli, Chang Hui, et al. New high strength and high toughness titanium alloy with 1200 MPa[J]. Materials China, 2016, 35(12): 914-918.
    [2] Kolli R, Arun D. A review of metastable beta titanium alloys[J]. Metals, 2018,8(7):506. doi: 10.3390/met8070506
    [3] Shang Guoqiang, Zhu Zhishou, Chang Hui, et al. Development of ultra-high strength titanium alloy[J]. Chinese Journal of Rare Metals, 2016,35(2):286−291. (商国强, 朱知寿, 常辉, 等. 超高强度钛合金研究进展[J]. 稀有金属, 2016,35(2):286−291.

    Shang Guoqiang, Zhu Zhishou, Chang Hui, et al. Development of ultra-high strength titanium alloy[J]. Chinese Journal of Rare Metals, 2016, 35(2): 286-291.
    [4] Sheng Cao,Xigen Zhou,Chao Voon Samuel Lim, et al. A strong and ductile Ti-3Al-8V-6Cr-4Mo-4Zr (beta-c) alloy achieved by introducing trace carbon addition and cold work - sciencedirect[J]. Scripta Materialia, 2020,178:124−128. doi: 10.1016/j.scriptamat.2019.11.021
    [5] Semiatin S L. An overview of the thermomechanical processing of α/β titanium alloys: Current status and future research opportunities[J]. Metallurgical and Materials Transactions A, 2020,51(6):2593−2625. doi: 10.1007/s11661-020-05625-3
    [6] Chen W, Lv Y, Zhang X, et al. Comparing the evolution and deformation mechanisms of lamellar and equiaxed microstructures in near β-ti alloys during hot deformation[J]. Materials Science and Engineering A, 2019,758(5):71−78.
    [7] Karasevskaya O P, Ivasishin O M, Semiatin S L, et al. Deformation behavior of beta-titanium alloys[J]. Materials Science & Engineering A, 2003,354(1-2):121−132.
    [8] Zhang B, Tao Y, Huang M, et al. Design of uniform nano α precipitates in a pre-deformed β-Ti alloy with high mechanical performance[J]. Journal of Materials Research and Technology, 2018,8(1):777−787.
    [9] Ma Yan, Du Zhaoxin, Xiao Ming, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets[J]. Progress in Natural Science Materials International, 2018,28:711−717. doi: 10.1016/j.pnsc.2018.10.004
    [10] Markovsky P E, Bondarchuk V I, Matviychuk Y V, et al. Evolution of microstructure, phase composition, and tensile properties of severely cold deformed titanium metastable β alloy in rapid continuous heating[J]. Transactions of Nonferrous Metals Society of China, 2014,24(5):1365−1371. doi: 10.1016/S1003-6326(14)63200-3
    [11] Maurel P, Weiss L, Bocher P, et al. Effects of smat at cryogenic and room temperatures on the kink band and martensite formations with associated fatigue resistance in a β-metastable titanium alloy[J]. Materials Science and Engineering A, 2021,803(10):140618.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回