留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铸造烧结法制备TiC颗粒增强铁基复合材料的磨损性能

孙雪莉 王帅 刘晨宇 付志强 郑开宏 王娟 柯志敏

孙雪莉, 王帅, 刘晨宇, 付志强, 郑开宏, 王娟, 柯志敏. 铸造烧结法制备TiC颗粒增强铁基复合材料的磨损性能[J]. 钢铁钒钛, 2023, 44(6): 70-75. doi: 10.7513/j.issn.1004-7638.2023.06.010
引用本文: 孙雪莉, 王帅, 刘晨宇, 付志强, 郑开宏, 王娟, 柯志敏. 铸造烧结法制备TiC颗粒增强铁基复合材料的磨损性能[J]. 钢铁钒钛, 2023, 44(6): 70-75. doi: 10.7513/j.issn.1004-7638.2023.06.010
Sun Xueli, Wang Shuai, Liu Chenyu, Fu Zhiqiang, Zheng Kaihong, Wang Juan, Ke Zhimin. Wear properties of TiC particle reinforced iron matrix composites prepared by casting sintering method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 70-75. doi: 10.7513/j.issn.1004-7638.2023.06.010
Citation: Sun Xueli, Wang Shuai, Liu Chenyu, Fu Zhiqiang, Zheng Kaihong, Wang Juan, Ke Zhimin. Wear properties of TiC particle reinforced iron matrix composites prepared by casting sintering method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 70-75. doi: 10.7513/j.issn.1004-7638.2023.06.010

铸造烧结法制备TiC颗粒增强铁基复合材料的磨损性能

doi: 10.7513/j.issn.1004-7638.2023.06.010
基金项目: 国家重点研发计划(2021YFB3701204);广东省科学院发展专项资金项目(2022GDASZH-2022010103);清远市科技计划项目(2023DZX013);广西科技重大专项(桂科AA23023017)。
详细信息
    作者简介:

    孙雪莉,1997年出生,女,汉族,山东临沂人,硕士研究生,主要从事钢铁耐磨蚀方面的研究,E-mail:1374367479@qq.com

    通讯作者:

    付志强,1970年出生,男,博士,教授,主要从事摩擦学、表面工程及功能材料研究,E-mail:fuzq@cugb.edu.cn

  • 中图分类号: TB331

Wear properties of TiC particle reinforced iron matrix composites prepared by casting sintering method

  • 摘要: 通过铸造烧结法制备TiC颗粒增强高铬铸铁基复合材料,采用EDS、SEM等检测手段研究增强颗粒对材料显微组织和磨损行为的影响规律。结果表明,与高铬铸铁相比,复合材料中由于TiC颗粒的存在使其洛氏硬度(HRC)从49提高到了60。在磨损过程中,高铬铸铁表面的M7C3型碳化物在磨粒的反复作用下出现了明显的裂纹,并逐渐向基体内扩展。破碎后的碳化物容易脱落,不能有效阻止磨粒在材料表面的犁削作用,加剧了材料的磨损。而在复合材料中,随着较软的基体相优先被磨料削除,会裸露出大量的TiC颗粒。这些表面凸起的TiC颗粒承担磨粒的主要破坏作用,从而有效保护基体材料。对比发现,在相同的磨损条件下,复合材料的耐磨性与高铬铸铁相比提高了1.95倍。
  • 图  1  三体磨损示意(单位:mm)

    Figure  1.  Schematic diagram of three-body wear

    图  2  试验钢的显微组织形貌

    Figure  2.  Microstructure of test steel

    图  3  试验钢的洛氏硬度

    Figure  3.  Rockwell hardness of the test steel

    图  4  试验钢的磨损性能

    Figure  4.  Wear properties of the two test steel samples

    图  5  试验钢的表面磨损形貌

    Figure  5.  Surface wear morphology of different experimental steel samples

    图  6  试验钢的截面磨损形貌

    Figure  6.  Cross-sectional wear morphology of different test steel samples

    表  1  高铬铸铁的化学成分

    Table  1.   Chemical composition of high chromium cast iron %

    CSiMnCrNiMoSPFe
    3.1~3.30.1~0.50.3~0.625~260.2~0.40.3~0.60.0210.023余量
    下载: 导出CSV

    表  2  试验钢组织中物相的EDS能谱

    Table  2.   EDS energy spectra of phase in the microstructure of test steel

    试验钢y/%
    CSiTiCrFe
    高铬铸铁136.0842.9820.94
    219.321.2410.0563.39
    336.2141.5421.77
    复合材料441.0556.681.211.06
    538.80.1853.384.273.37
    下载: 导出CSV
  • [1] Olejnik E, Szymanski L, Tokarski T, et al. Local composite reinforcements of TiC/FeMn type obtained in situ in steel castings[J]. Archives of Civil and Mechanical Engineering, 2019,19(4):997−1005. doi: 10.1016/j.acme.2019.05.004
    [2] Wang S, Li Y, Wang J, et al. Effect of sintering temperature on the microstructure and properties of Ti/W–C reinforced Fe-based composites[J]. Vacuum, 2021,194:110617. doi: 10.1016/j.vacuum.2021.110617
    [3] Yang Yi, Yang Haokun, He Qiang, et al. Effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Application, 2023,17(2):303−309. (杨壹, 杨浩坤, 何强, 等. 时效热处理对Fe-Mn-Al-C轻质高锰钢拉伸和冲击性能的影响[J]. 材料研究与应用, 2023,17(2):303−309.

    Yang Yi, Yang Haokun, He Qiang, et al. Effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Application, 2023, 17(2): 303-309.
    [4] He Qiang, Jie Xiaohua, Zheng Zhibin, et al. Effect of carbon content on microstructure and mechanical properties of medium chromium alloy steel[J]. Journal of Iron and Steel Research, 2023,35(5):586−594. (何强, 揭晓华, 郑志斌, 等. 碳含量对中铬合金钢组织与力学性能的影响[J]. 钢铁研究学报, 2023,35(5):586−594.

    He Qiang, Jie Xiaohua, Zheng Zhibin, et al. Effect of carbon content on microstructure and mechanical properties of medium chromium alloy steel[J]. Journal of Iron and Steel Research, 2023, 35(5): 586-594.
    [5] Dong Xiaorong, Zheng Zhibin, Long Jun, et al. Analysis of domestic patent technology of vanadium-containing cast wear-resistant steel materials[J]. Materials Research and Application, 2022,16(5):766−775. (董晓蓉, 郑志斌, 龙骏, 等. 含钒铸造耐磨钢铁材料国内专利技术分析[J]. 材料研究与应用, 2022,16(5):766−775.

    Dong Xiaorong, Zheng Zhibin, Long Jun, et al. Analysis of domestic patent technology of vanadium-containing cast wear-resistant steel materials[J]. Materials Research and Application, 2022, 16(5): 766-775.
    [6] Zheng Zhibin, Long Jun, Wang Yuhui, et al. Research progress of mechanical properties of twinning induced plasticity steel[J]. Journal of Iron and Steel Research, 2023,35(2):115−130. (郑志斌, 龙骏, 王玉辉, 等. 孪生诱发塑性钢力学性能的研究进展[J]. 钢铁研究学报, 2023,35(2):115−130.

    Zheng Zhibin, Long Jun, Wang Yuhui, et al. Research progress of mechanical properties of twinning induced plasticity steel[J]. Journal of Iron and Steel Research, 2023, 35(2): 115-130.
    [7] Huang L, Deng X, Li C, et al. Effect of TiC particles on three-body abrasive wear behaviour of low alloy abrasion-resistant steel[J]. Wear, 2019,434-435:202971. doi: 10.1016/j.wear.2019.202971
    [8] Huang L, Pan Y, Zhang J, et al. Densification, microstructure and mechanical performance of TiC/Fe composites by spark plasma sintering[J]. Journal of Materials Research and Technology, 2020,9(3):6116−6124. doi: 10.1016/j.jmrt.2020.04.014
    [9] Zhu M, Jiang Y, Sui Y, et al. Study on microstructure and abrasive wear properties of in-situ TiC reinforced high chromium cast iron matrix composite[J]. Materials Research Express, 2022,9(3):036517. doi: 10.1088/2053-1591/ac5b02
    [10] Wang S, Li Y, Wang J, et al. Effect of in-situ (Ti&W)C multiphase particles on three-body abrasive wear of high chromium cast iron[J]. Materials Chemistry and Physics, 2023,295:127161. doi: 10.1016/j.matchemphys.2022.127161
    [11] Zhong L, Wei J, Bai H, et al. Effects of soaking time on the microstructure and mechanical properties of Nb-NbC/Fe core–shell rod-reinforced cast-iron-matrix composite fabricated through two-step in situ solid-phase diffusion[J]. Journal of Materials Research and Technology, 2020,9(6):12308−12317. doi: 10.1016/j.jmrt.2020.08.095
    [12] Lee J, Lee D, Song M H, et al. In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering[J]. Journal of Materials Science & Technology, 2018,34(8):1397−1404.
    [13] Wang Shuai, Zheng Zhibin, Li Yingmin, et al. Effect of W/Ti content on the microstructure and phase transformation of iron matrix composites[J]. Materials Research and Application, 2023,17(1):109−117. (王帅, 郑志斌, 李英民, 等. W/Ti含量对钢铁基复合材料微观组织和相变的影响规律[J]. 材料研究与应用, 2023,17(1):109−117.

    Wang Shuai, Zheng Zhibin, Li Yingmin, et al. Effect of W/Ti content on the microstructure and phase transformation of iron matrix composites[J]. Materials Research and Application, 2023, 17(1): 109-117.
    [14] Chen H, Lu Y, Sun Y, et al. Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding[J]. Surface and Coatings Technology, 2020,395:125867. doi: 10.1016/j.surfcoat.2020.125867
    [15] Liang Y, Zhao Q, Zhang Z, et al. Preparation and characterization of TiC particulate locally reinforced steel matrix composites from Cu–Ti–C system with various C particles[J]. Journal of Asian Ceramic Societies, 2018,2(3):281−288.
    [16] Jiang J, Li S, Zhang W, et al. In situ formed TiCx in high chromium white iron composites: Formation mechanism and influencing factors[J]. Journal of Alloys and Compounds, 2019,788:873−880. doi: 10.1016/j.jallcom.2019.02.292
    [17] Olejnik E, Szymański Ł, Batóg P, et al. TiC-FeCr local composite reinforcements obtained in situ in steel casting[J]. Journal of Materials Processing Technology, 2020,275:116157. doi: 10.1016/j.jmatprotec.2019.03.017
    [18] Wang Shuai, Li Yingmin, Zheng Zhibin, et al. Effect of in-situ (W&Ti)C complex particles on wear behavior of high chromium cast iron[J]. Iron Steel Vanadium Titanium, 2023,44(1):151−157. (王帅, 李英民, 郑志斌, 等. 原位(W&Ti)C复相颗粒对高铬铸铁磨损行为的影响规律[J]. 钢铁钒钛, 2023,44(1):151−157. doi: 10.7513/j.issn.1004-7638.2023.01.024

    Wang Shuai, Zheng Zhibin, Wang Juan, et al. Effect of in-situ (W&Ti)C complex particles on wear behavior of high chromium cast iron[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 151-157. doi: 10.7513/j.issn.1004-7638.2023.01.024
    [19] Qiu F, Zhang H, Li C L, et al. Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles[J]. Materials Science and Engineering:A, 2021,819:141485. doi: 10.1016/j.msea.2021.141485
    [20] Guan D, He X, Zhang R, et al. Tribological and corrosion properties of PM 316L matrix composites reinforced by in situ polymer-derived ceramics[J]. Vacuum, 2018,148:319−326. doi: 10.1016/j.vacuum.2017.12.003
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  25
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回