留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土对HA/Ti复合材料力学及生物活性影响的研究

范兴平 杨成

范兴平, 杨成. 稀土对HA/Ti复合材料力学及生物活性影响的研究[J]. 钢铁钒钛, 2023, 44(6): 76-80. doi: 10.7513/j.issn.1004-7638.2023.06.011
引用本文: 范兴平, 杨成. 稀土对HA/Ti复合材料力学及生物活性影响的研究[J]. 钢铁钒钛, 2023, 44(6): 76-80. doi: 10.7513/j.issn.1004-7638.2023.06.011
Fan Xingping, Yang Cheng. Study on effect of rare earths on the mechanical and biological activity of HA/Ti composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 76-80. doi: 10.7513/j.issn.1004-7638.2023.06.011
Citation: Fan Xingping, Yang Cheng. Study on effect of rare earths on the mechanical and biological activity of HA/Ti composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 76-80. doi: 10.7513/j.issn.1004-7638.2023.06.011

稀土对HA/Ti复合材料力学及生物活性影响的研究

doi: 10.7513/j.issn.1004-7638.2023.06.011
基金项目: 四川省科技计划项目(项目编号:2022YFSY0044)。
详细信息
    作者简介:

    范兴平,1979年出生,男,四川广安人,博士,教授,主要从事钒钛新材料研究,E-mail:fanxingping123@163.com

  • 中图分类号: TF823,TG135.5

Study on effect of rare earths on the mechanical and biological activity of HA/Ti composites

  • 摘要: 为进一步改善HA/Ti复合材料的性能,以HA粉及商用Ti粉为原料,分别加入一定量的不同稀土化合物(CeO2、LaF3及SrO),利用粉末冶金方法制备了稀土增强型HA/Ti生物复合材料。借助X射线衍射仪(XRD)、扫描电镜(SEM)、金相显微镜及万能力学试验机,探究了三种稀土元素对HA/Ti复合材料组织结构、力学性能及生物活性的影响。结果表明,分别添加0.3%的CeO2、LaF3及SrO稀土化合物所得的三种复合材料的力学性能均得以改善,其抗压强度分别为47、91 MPa和40 MPa,而未添加稀土的HA/Ti复合材料的抗压强度仅为34 MPa;且LaF3还能进一步改善复合材料的生物活性,但添加CeO2和SrO未能改善其生物活性。
  • 图  1  HA/Ti添加不同稀土的金相组织

    Figure  1.  Metallographic diagrams of HA/Ti with different rare earth elements

    (a)HA/Ti; (b)HA/Ti+0.3%CeO2; (c)HA/Ti+0.3%LaF3; (d) HA/Ti+0.3%SrO

    图  2  添加稀土前后复合材料的XRD谱

    (a)为HA/Ti试样;(b)、(c)和(d)分别为添加CeO2、LaF3及SrO后的试样

    Figure  2.  XRD spectra of composites before and after adding rare earths

    图  3  稀土对复合材料抗压强度的影响

    Figure  3.  Effect of rare earths on compressive strength of composite materials

    图  4  不同稀土增强复合材料在SBF溶液中浸泡7天后形貌的SEM图像

    Figure  4.  SEM images of morphology of different rare earth reinforced composites after immersion in SBF solution for 7 days

    (a)HA/Ti; (b)HA/Ti+0.3%CeO2; (c)HA/Ti+0.3%LaF3; (d)HA/Ti+0.3%SrO

    图  5  加入LaF3后的复合材料在SBF溶液中浸泡7天后的XRD谱

    Figure  5.  XRD pattern of composite material after adding LaF3 and soaking in SBF solution for 7 days

  • [1] Hazwani M R, Lim L X, Lockman Z, et al. Fabrication of titanium-based alloys with bioactive surface oxide layer as biomedical implants: Opportunity and challenges[J]. Transactions of Nonferrous Metals Society of China, 2022,32:1−44. doi: 10.1016/S1003-6326(21)65776-X
    [2] Li F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of nano-carbon reinforced titanium matrix/hydroxyapatite biocomposites prepared by spark plasma sintering[J]. Nanomaterials, 2019,8(9):729.
    [3] Hindy A, Farahmand F, Tabatabaei F S. In vitro biological outcome of laser application for modification or processing of titanium dental implants[J]. Lasers in Medical Science, 2017, 32(5): 1197-1206.
    [4] Giner L, Mercadé M, Torrent S, et al. Double acid etching treatment of dental implants for enhanced biological properties[J]. Journal of Applied Biomaterials & Functional Materials, 2018,16(2):83−89.
    [5] Xia L, Xie Y, Fang B, et al. In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants[J]. Chemical Engineering Journal, 2018,347:711−720. doi: 10.1016/j.cej.2018.04.045
    [6] Harjit S, Sunpreet S, Chander P, et al. Experimental investigation and parametric optimization of HA-TiO2 plasma spray coating on β-phase titanium alloy[J]. Materials Today:Proceedings, 2020,3(28):1340−1344.
    [7] Xie F X, Huang J B, Yang H, et al. Ti-10Mo/hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity[J]. Materials Today Communications, 2021,29:102887. doi: 10.1016/j.mtcomm.2021.102887
    [8] Arifin A, Sulong A B, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy(HA/Ti) composite as implant materials using powder metallurgy: A review[J]. Materials & Design, 2014,55(6):165−175.
    [9] Egorov A, Smirnov V, Shvorneva L, et al. High-temperature hydroxyapatite-titanium interaction[J]. Inorganic Materials, 2010,46:168−171. doi: 10.1134/S0020168510020147
    [10] Zhang Guojun, Sun Yuanjun, Niu Rongmei, et al. The strengthening mechanism of rare earth lanthanum oxide doped molybdenum alloys[J]. Rare Metal Materials and Engineering, 2005,34(12):1926−1930. (张国君, 孙院军, 牛荣梅, 等. 稀土氧化镧掺杂钼合金的强化机制研究[J]. 稀有金属材料与工程, 2005,34(12):1926−1930. doi: 10.3321/j.issn:1002-185X.2005.12.020

    Zhang Guojun, Sun Yuanjun, Niu Rongmei, et al. The strengthening mechanism of rare earth lanthanum oxide doped molybdenum alloys[J]. Rare Metal Materials and Engineering, 2005, 34(12): 1926-1930. doi: 10.3321/j.issn:1002-185X.2005.12.020
    [11] Wang Bin, Liu Yong, Liu Yanbin, et al. Effects of LaH2 and LaB6 addition of microstructure and mechanical property of powder metallurgy Ti alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2011,16(1):136−142. (王斌, 刘咏, 刘延斌, 等. 稀土La对粉末冶金钛合金组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2011,16(1):136−142. doi: 10.3969/j.issn.1673-0224.2011.01.023

    Wang Bin, Liu Yong, Liu Yanbin, et al. Effects of LaH2 and LaB6 addition of microstructure and mechanical property of powder metallurgy Ti alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(1): 136-142. doi: 10.3969/j.issn.1673-0224.2011.01.023
    [12] Tang Xia, Meng Yukun. Effect of different La contents in hydroxyapatite-coated Ti plate on cytocompatibility of attached cells[J]. Acta Academiae Medicinae Militaris Tertiae, 2011,33(24):2592−2595. (唐霞, 孟玉坤. 钛表面羟基磷灰石涂层含镧量对附着细胞生物学性能的影响[J]. 第三军医大学学报, 2011,33(24):2592−2595. doi: 10.16016/j.1000-5404.2011.24.031

    Tang Xia, Meng Yukun. Effect of different La contents in hydroxyapatite-coated Ti plate on cytocompatibility of attached cells[J]. Acta Academiae Medicinae Militaris Tertiae, 2011, 33(24): 2592-2595. doi: 10.16016/j.1000-5404.2011.24.031
    [13] Shao Zhenyi, Li Feng, Zhang Jianlin, et al. Research progress of various nano-materials reinforced and rare earth element doped Ti-HA composited[J]. Metallic Functional Materials, 2017,24(2):13−22. (邵甑胰, 李峰, 张建林, 等. 稀土掺杂纳米相增强Ti-HA复合材料研究进展[J]. 金属功能材料, 2017,24(2):13−22. doi: 10.13228/j.boyuan.issn1005-8192.2016075

    Shao Zhenyi, Li Feng, Zhang Jianlin, et al. Research progress of various nano-materials reinforced and rare earth element doped Ti-HA composited[J]. Metallic Functional Materials, 2017, 24(2): 13-22. doi: 10.13228/j.boyuan.issn1005-8192.2016075
    [14] 吕凝磊. 掺锶生物玻璃及其与羟基磷灰石复合材料的制备及溶解性研究[D]. 长沙: 中南大学, 2014.

    Lü Ninglei. Fabrication of Sr-containing bioglass/HA composite and its solubility[D]. Changsha: Central South University, 2014.
    [15] Kokubo T, Takadama H. How useful is SBF in prediction in vivo bone bioactivity[J]. Biomaterials, 2006,27:2907−2915. doi: 10.1016/j.biomaterials.2006.01.017
    [16] Ning Congqin, Zhou Yu, Huang Congchun, et al. In vivo bioactivity of Ti/HA biocomposited by powder metallurgy methods[J]. Journal of Inorganic Materials, 2003,18(4):879−884. (宁聪琴, 周玉, 黄丛春, 等. 粉末冶金法制备Ti/HA生物复合材料的体内生物活性[J]. 无机材料学报, 2003,18(4):879−884.

    Ning Congqing, Zhou Yu, Huang Congchun, et al. In vivo bioactivity of Ti/HA biocomposited by powder metallurgy methods[J]. Journal of Inorganic Materials, 2003, 18(4): 879-884.
  • 加载中
图(5)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回