留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SPS烧结工艺对TiC/6061Al复合材料显微结构及力学性能的影响

张洋 刘灿森 王娟 田卓 郑开宏 柯志敏

张洋, 刘灿森, 王娟, 田卓, 郑开宏, 柯志敏. SPS烧结工艺对TiC/6061Al复合材料显微结构及力学性能的影响[J]. 钢铁钒钛, 2023, 44(6): 81-87. doi: 10.7513/j.issn.1004-7638.2023.06.012
引用本文: 张洋, 刘灿森, 王娟, 田卓, 郑开宏, 柯志敏. SPS烧结工艺对TiC/6061Al复合材料显微结构及力学性能的影响[J]. 钢铁钒钛, 2023, 44(6): 81-87. doi: 10.7513/j.issn.1004-7638.2023.06.012
Zhang Yang, Liu Cansen, Wang Juan, Tian Zhuo, Zheng Kaihong, Ke Zhimin. Effect of SPS sintering process on microstructure and mechanical properties of TiC / 6061Al composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 81-87. doi: 10.7513/j.issn.1004-7638.2023.06.012
Citation: Zhang Yang, Liu Cansen, Wang Juan, Tian Zhuo, Zheng Kaihong, Ke Zhimin. Effect of SPS sintering process on microstructure and mechanical properties of TiC / 6061Al composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 81-87. doi: 10.7513/j.issn.1004-7638.2023.06.012

SPS烧结工艺对TiC/6061Al复合材料显微结构及力学性能的影响

doi: 10.7513/j.issn.1004-7638.2023.06.012
基金项目: 广东省科学院发展专项资金项目(2022GDASZH-2022010103);清远市科技计划项目(2023DZX013) ;广东省科学院杰出科学家项目(2020GDASYL-20200101001)。
详细信息
    作者简介:

    张洋,1998年出生,男,汉族,湖南常德人,硕士研究生,主要从事纳米颗粒增强金属基复合材料的研究,E-mail:403318522@qq.com

    通讯作者:

    王娟,1981年出生,女,山东烟台人,博士,教授级高工,主要从事金属基复合材料研究,E-mail:sweetanna@foxmail.com

  • 中图分类号: TB331,TF823

Effect of SPS sintering process on microstructure and mechanical properties of TiC / 6061Al composites

  • 摘要: 采用低速卧式球磨法和放电等离子烧结法(SPS)制备了2%TiC/6061Al复合材料,利用光学显微镜、扫描电镜、显微硬度仪和拉伸试验研究了不同烧结温度和压力对该复合材料致密度、显微结构和力学性能的影响。结果表明,当烧结温度为500 ℃时,烧结不充分,颗粒之间结合不紧密,导致复合材料致密度过低;当烧结温度为550 ℃时,超过了Al基体的熔点,少部分熔融Al飞溅并溢出模具,导致模具内压力不平衡,从而降低了复合材料致密度。复合材料致密度和力学性能随着烧结压力的增大而增大,故选取模具所能承受的最大压力作为最佳烧结压力。故当烧结温度为525 ℃、烧结压力为40 MPa时,该复合材料的致密度、硬度和强度均达到最大值。
  • 图  1  6061Al基体表面的SEM形貌

    Figure  1.  SEM image of the surface morphology of 6061Al substrate

    图  2  低能卧式球磨下粉体混合状态的SEM形貌

    (a)×500倍;(b)×1000倍;(c)×2000倍

    Figure  2.  SEM image of powder mixing state under low energy horizontal ball milling

    图  3  低速卧式球磨后2%TiC/6061Al的XRD谱

    Figure  3.  XRD patterns of 2% TiC/6061Al after low-speed horizontal ball milling

    图  4  不同烧结温度下的2%TiC/6061Al复合材料的SEM形貌

    Figure  4.  SEM images of 2% TiC / 6061Al composites sintered at different temperatures

    图  5  不同烧结温度下2%TiC/6061Al复合材料的拉伸断口SEM形貌

    Figure  5.  SEM images of tensile fracture morphology of 2% TiC/6061Al composites at different sintering temperatures

    (a)、 (b)、 (c):500 ℃; (d)、 (e)、 (f):525 ℃; (g) 、(h) 、(i) :550 ℃

    图  6  不同烧结压力下2%TiC/6061Al复合材料的SEM形貌

    Figure  6.  SEM images of 2% TiC/6061Al composites under different sintering pressures

    表  1  6061Al合金主要元素成分

    Table  1.   Main chemical composition of 6061Al alloy %

    AlSiFeCuMnMgCrZnTiNiCo
    97.850.5550.0920.2470.0041.070.1120.0080.0040.0020.005
    下载: 导出CSV

    表  2  6061Al的主要性能参数

    Table  2.   Main performance parameters of 6061Al

    密度/
    (g·cm−3
    抗拉强
    度/MPa
    屈服强
    度/MPa
    延伸率/
    %
    弹性系
    数/GPa
    抗弯强
    度/MPa
    2.7512455.22568.9228
    下载: 导出CSV

    表  3  TiC的主要性能参数

    Table  3.   The main performance parameters of TiC

    密度/
    (g·cm−3
    熔点/ ℃努氏硬度/
    GPa
    弹性模量/
    GPa
    热膨胀系
    数/ ℃−1
    4.93306728~354407.74×10−6
    下载: 导出CSV

    表  4  不同烧结温度下的2%TiC/6061Al复合材料的致密度

    Table  4.   The relative density of 2% TiC/6061Al composites sintered at different temperatures

    T/ ℃理论密度/(g·cm−3实际密度/(g·cm−3致密度/%
    5002.7932.58392.4
    5252.7932.73297.8
    5502.7932.68596.1
    下载: 导出CSV

    表  5  不同烧结温度下制备的2%TiC/6061Al复合材料的力学性能

    Table  5.   Mechanical properties of 2% TiC/6061Al composites sintered at different temperatures

    T/℃抗拉强
    度/MPa
    屈服强
    度/MPa
    弹性模
    量/GPa
    延伸率/
    %
    抗弯强
    度/MPa
    硬度
    (HV)
    500246204626.434263
    525281233787.840175
    550263218696.638266
    下载: 导出CSV

    表  6  不同烧结压力下的2%TiC/6061Al复合材料的致密度

    Table  6.   Density of 2% TiC/6061Al composites under different sintering pressures

    压力/MPa理论密度/(g·cm−3实际密度/(g·cm−3致密度/%
    202.7932.68496.1
    302.7932.73297.8
    402.7932.75698.6
    下载: 导出CSV

    表  7  不同烧结压力下制备的2%TiC/6061Al复合材料的力学性能

    Table  7.   Mechanical properties of 2% TiC/6061Al composites sintered at different sintering pressures

    压力/
    MPa
    抗拉强
    度/MPa
    屈服强
    度/MPa
    弹性模
    量/GPa
    延伸率/
    %
    抗弯强
    度/MPa
    硬度
    (HV)
    20233193604.233754
    30251208696.335169
    40266220747.638677
    下载: 导出CSV
  • [1] Liu Zhenshan, Li Yingdong, Zhao Jingwei, et al. Research on aluminum alloy materials and application technology for automobile lightweight[J]. Progress of Materials in China, 2022,41:786−795. (刘贞山, 李英东, 赵经纬, 等. 汽车轻量化用铝合金材料及应用技术的研究[J]. 中国材料进展, 2022,41:786−795.

    Liu Zhenshan, Li Yingdong, Zhao Jingwei, et al. Research on aluminum alloy materials and application technology for automobile lightweight [J]. Progress of Materials in China, 2022, 41 : 786-795.
    [2] Kaushal G, Bharti P K, Anas M. Mechanical and tribological behavior analysis of metal powder reinforced filled 7075 aluminum alloy composites for gear material application[J]. JETIR, 2021,8(9):756−760.
    [3] Patel M, Mulgaonkar S, Desai H, et al. Development and implementation of wire arc additive manufacturing (WAAM) based on pulse spray GMAW for aluminum alloy (AlSi7Mg)[J]. Transactions of the Indian Institute of Metals, 2021,74(5):1129−1140. doi: 10.1007/s12666-020-02154-w
    [4] Sakthi Sadhasivam R M, Ramanathan K, Bhuvaneswari B V, et al. A study on tribological behaviour and analysis of ZnO reinforced AA6061 matrix composites fabricated by stir casting route[J]. Industrial Lubrication and Tribology, 2021,73(4):642−651. doi: 10.1108/ILT-11-2020-0392
    [5] Bhoi N K, Singh H, Pratap S, et al. Developments in the aluminum metal matrix composites reinforced by micro/nano particles – A review[J]. Journal of Composite Materials, 2020,54(6):813−833. doi: 10.1177/0021998319865307
    [6] Zhou N, Yang S, Liu Y, et al. Performance evaluation on particle-reinforced rigid/flexible composites via fused deposition modeling 3D printing[J]. Journal of Applied Polymer Science, 2022,139(19/20):52149.
    [7] Xu Shenghang, Qiu Jingwen, Zhang Huibin, et al. Friction behavior of TiC particle reinforced Ti-30Fe composites[J]. Chinese Journal of Nonferrous Metals ( English ), 2021,31:988−998. (徐圣航, 邱敬文, 张惠斌, 等. TiC颗粒强化Ti-30Fe复合材料的摩擦行为[J]. 中国有色金属学报(英文版), 2021,31:988−998.

    Xu Shenghang, Qiu Jingwen, Zhang Huibin, et al. Friction behavior of TiC particle reinforced Ti-30 Fe composites [J]. Chinese Journal of Nonferrous Metals ( English ), 2021, 31 : 988-998.
    [8] Zhai W, Zhou W, Nai S M L. In-situ formation of TiC nanoparticles in selective laser melting of 316L with addition of micronsized TiC particles[J]. Materials Science and Engineering:A, 2022,829:142179. doi: 10.1016/j.msea.2021.142179
    [9] Bagheri G A. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J]. Journal of Alloys and Compounds, 2016,676:120−126. doi: 10.1016/j.jallcom.2016.03.085
    [10] Zeng X W, Zhang W G, Wei N, et al. Preparation of in situ TiCp/Ly12 composite and its microstructure and mechanical properties[J]. Materials Science & Engineering A, 2007,443:224−228.
    [11] Selcuk C, Kennedy A R. Al–TiC composite made by the addition of master alloys pellets synthesised from reacted elemental powders[J]. Materials Letters, 2006,60:3364−3366. doi: 10.1016/j.matlet.2006.03.021
    [12] 张清泉. 纳米TiC颗粒孕育Al-Cu合金的组织演变及强韧性[D]. 长春: 吉林大学, 2018.

    Zhang Qingquan. Microstructure evolution and strength-toughness of Al-Cu alloy inoculated with nano-TiC particles [D]. Changchun : Jilin University, 2018.
    [13] 周东帅. 纳米TiC_p/Al-Cu复合材料制备和组织与力学性能的研究[D]. 长春: 吉林大学, 2014.

    Zhou Dongshuai. Preparation, microstructure and mechanical properties of nano-TiC_p / Al-Cu composites [D]. Changchun : Jilin University, 2014.
    [14] Yu W, Wang Y, Li Y, et al. Texture evolution, segregation behavior, and mechanical properties of 2060Al-Li (aluminium-lithium) composites reinforced by TiC (titanium carbide) nanoparticles[J]. Composites Part B: Engineering, 2023,255:110611. doi: 10.1016/j.compositesb.2023.110611
    [15] Wu Y, Luo S, Wu J B, et al. Development and characterization of CrCoNi medium entropy alloy particles reinforced aluminum matrix composite[J]. Crystals, 2022,12:1452. doi: 10.3390/cryst12101452
    [16] Zhang J, Liu Q, Yang S, et al. Microstructural evolution of hybrid aluminum matrix composites reinforced with SiC nanoparticles and graphene/graphite prepared by powder metallurgy[J]. Progress in Natural Science: Materials International, 2020,30:192−199. doi: 10.1016/j.pnsc.2020.01.024
    [17] Shi Q, Mertens R, Dadbakhsh S, et al. In-situ formation of particle reinforced aluminium matrix composites by laser powder bed fusion of Fe2O3/AlSi12 powder mixture using laser melting/remelting strategy[J]. Journal of Materials Processing Technology, 2022,299:117357. doi: 10.1016/j.jmatprotec.2021.117357
    [18] 张学拯. 热处理对粉末触变成形SiCp/6061Al基复合材料组织和力学性能的影响及其强韧化机理研究[J]. 兰州: 兰州理工大学, 2019.

    Zhang Xuezheng. Effect of heat treatment on microstructure and mechanical properties of powder thixoformed SiCp / 6061Al matrix composites and its strengthening and toughening mechanism [J]. Lanzhou: Lanzhou University of Technology, 2019.
    [19] Cohen S, Ratzker B, Kalabukhov S, et al. Diffusion bonding of transparent ceramics by spark plasma sintering (SPS) complemented by hot isostatic pressing (HIP)[J]. Journal of the European Ceramic Society, 2023,43:6628−6633. doi: 10.1016/j.jeurceramsoc.2023.06.071
    [20] Imran M, Deillon L, Sizova I, et al. Process optimization and study of the co-sintering behaviour of Cu-Ni multi-material 3D structures fabricated by spark plasma sintering (SPS)[J]. Materials & Design, 2022,223:111210.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回