留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛铁尾矿基高强烧结透水砖的制备及性能

吴平川 刘治兵 刘婧 平浩岩 马锦涛 王长龙 郑永超 荆牮霖 齐洋 翟玉新 刘枫

吴平川, 刘治兵, 刘婧, 平浩岩, 马锦涛, 王长龙, 郑永超, 荆牮霖, 齐洋, 翟玉新, 刘枫. 钒钛铁尾矿基高强烧结透水砖的制备及性能[J]. 钢铁钒钛, 2023, 44(6): 98-109. doi: 10.7513/j.issn.1004-7638.2023.06.015
引用本文: 吴平川, 刘治兵, 刘婧, 平浩岩, 马锦涛, 王长龙, 郑永超, 荆牮霖, 齐洋, 翟玉新, 刘枫. 钒钛铁尾矿基高强烧结透水砖的制备及性能[J]. 钢铁钒钛, 2023, 44(6): 98-109. doi: 10.7513/j.issn.1004-7638.2023.06.015
Wu Pingchuan, Liu Zhibing, Liu Jing, Ping Haoyan, Ma Jintao, Wang Changlong, Zheng Yongchao, Jing Jianlin, Qi Yang, Zhai Yuxin, Liu Feng. Preparation and properties of high-strength fired water permeable brick containing vanadium-titanium iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 98-109. doi: 10.7513/j.issn.1004-7638.2023.06.015
Citation: Wu Pingchuan, Liu Zhibing, Liu Jing, Ping Haoyan, Ma Jintao, Wang Changlong, Zheng Yongchao, Jing Jianlin, Qi Yang, Zhai Yuxin, Liu Feng. Preparation and properties of high-strength fired water permeable brick containing vanadium-titanium iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 98-109. doi: 10.7513/j.issn.1004-7638.2023.06.015

钒钛铁尾矿基高强烧结透水砖的制备及性能

doi: 10.7513/j.issn.1004-7638.2023.06.015
基金项目: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2020402079);河北省科技重大专项项目(21283804Z);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007);中铁建设集团有限公司科技研发计划(22-14b, 22-11b);邯郸市科学技术研究与发展计划项目(21422111260)。
详细信息
    作者简介:

    吴平川,1979年出生,男,河北曲周人,博士,教授,硕导,研究方向:环境功能材料及工业固废资源化综合利用研究,E-mail:wpch2006@126.com

    通讯作者:

    刘婧,1985年出生,女,河北任县人,本科,高级工程师,研究方向:固废基建材产品质量检测与检验,E-mail:64722704@qq.com

  • 中图分类号: X757,TU522

Preparation and properties of high-strength fired water permeable brick containing vanadium-titanium iron ore tailings

  • 摘要: 以钒钛铁尾矿为主要原料制备高强烧结透水砖,采用正交试验法、X射线衍射(XRD)、扫描电镜 (SEM)和能谱分析 (EDS)研究了钒钛铁尾矿高强烧结透水砖的基本性能、烧结机理。结果表明,当烧结透水砖中钒钛铁尾矿掺量为77%,烧结温度为1070 ℃,保温时间110 min时,烧制的产品抗压强度和透水系数分别达到65.7 MPa和0.063 cm/s,符合《透水砖》 (JC/T 945-2005) 中Cc60级产品的要求;高强烧结透水砖烧结后的产物为透辉石(CaMgSi2O6)和普通辉石(Ca(Mg,Fe,Al)(Si,Al)2O6)。随着烧结温度和保温时间的延长,低熔点元素P、Na、K溶出,烧结产物中Fe、Al元素的含量增多,透辉石中的多数Ca2+被Fe3+置换,使得普通辉石成为主晶相。烧结产物中的孔洞随着烧结温度的提高,发生了由大小不一的密闭孔→孔径不规则的联通孔→不规则塌陷孔→孔径小且均匀圆形孔的变化,这种变化为高强烧结透水砖的透水性提供了保障。该研究提高了钒钛铁尾矿的利用率,为钒钛铁尾矿的大规模应用提供了新途径。
  • 图  1  原料的粒度分布

    1:>4.75 μm;2:4.75~2.36 μm;3:2.36~1.18 μm;4:1.18~0.60 μm;5:0.60~0.30 μm;6:0.30~0.15 μm;7:−0.15 μmA:>0.30 μm;B:0.30~0.15 μm;C:0.15~0.074 μm;D:−0.074 μm

    Figure  1.  Particle size distribution of raw materials

    图  2  钒钛铁尾矿的SEM形貌[60]

    Figure  2.  SEM images of VTIOTs

    图  3  原料的XRD谱

    Figure  3.  XRD patterns of raw materials

    图  4  高强烧结透水砖基本性能的极差分析

    Figure  4.  Range analysis diagrams of basic properties for HSFWPB containing VTIOTs

    图  5  不同烧结条件下高强烧结透水砖的XRD谱

    Figure  5.  XRD patterns of HSFWPB containing VTIOTs under different firing conditions

    图  6  不同烧结温度下高强烧结透水砖的SEM形貌

    (a)1010 ℃;(b)1030 ℃;(c)1050 ℃;(d)1070 ℃

    Figure  6.  SEM images of HSFWPB containing VTIOTs at different firing temperatures

    图  7  图6中标注区域1~4的EDS谱

    (a)区域1;(b)区域2;(c)区域3;(d)区域4

    Figure  7.  EDS spectra of marked region 1~4 in Fig. 6

    表  1  原料的主要化学成分

    Table  1.   Main chemical components of raw materials %

    原料SiO2Al2O3Fe2O3CaOK2OMgONa2OP2O5TiO2其他烧失量
    钒钛铁尾矿41.137.8311.0520.380.4212.520.540.260.871.903.10
    湖泊底泥52.0813.644.895.273.061.970.352.070.152.4114.11
    铜尾矿47.596.085.505.161.7326.250.650.082.744.22
    未煅烧煤矸石36.7530.810.621.340.180.641.140.072.0826.37
    煅烧煤矸石52.0135.883.511.720.370.792.240.122.530.83
    下载: 导出CSV

    表  2  正交试验方案及测试结果

    Table  2.   Orthogonal test scheme and results for HSFWPB containing VTIOTs

    编号因素方案抗压强
    度/MPa
    透水系数/
    (cmˑs−1)
    A
    (掺量/%)
    B(烧结
    温度/ ℃)
    C(保温
    时间/min)
    175101050A1B1C140.20.108
    275103080A1B2C249.60.092
    3751050110A1B3C360.70.079
    4751070140A1B4C467.50.057
    577101080A2B1C238.10.115
    677103050A2B2C142.20.098
    7771050140A2B3C458.30.077
    8771070110A2B4C365.70.063
    9791010110A3B1C337.60.115
    10791030140A3B2C444.20.088
    1179105050A3B3C145.40.090
    1279107080A3B4C258.50.079
    13811010140A4B1C436.30.119
    14811030110A4B2C338.70.112
    1581105080A4B3C242.50.087
    1681107050A4B4C144.60.082
    下载: 导出CSV

    表  3  钒钛铁尾矿高强烧结基本性能方差分析

    Table  3.   Variance analysis table of basic properties for HSFWPB containing VTIOTs

    性能指标方差来源掺量/%烧结温度/ ℃保温时间/min误差总和
    抗压强度离差平方和444.6875992.1875173.187525.3751635.4375
    自由度333615
    均方148.229330.72957.7294.229
    检验统计量35.0578.2113.65
    临界值F0.05(3,6)=4.76F0.25(3,6)=1.78
    显著性显著显著显著
    透水系数离差平方和0.000540.000440.000240.004120.00534
    自由度333615
    均方0.0001800.0001470.0000800.000687
    检验统计量0.260.210.12
    临界值F0.05(3,6)=4.76F0.25(3,6)=1.78
    显著性不显著不显著不显著
    下载: 导出CSV
  • [1] Sun Y, Gu X W, Xu X C. Ecological restoration and mechanical reinforcement effect of slope of tailings reservoir[J]. Environmental Earth Sciences, 2021,80:1−12. doi: 10.1007/s12665-020-09327-2
    [2] Jiang P, Lv S W, Wang Y, et al. Investigation on direct shear and energy dissipation characteristics of iron tailings powder reinforced by polypropylene fiber[J]. Applied Sciences, 2019,23(9):5098−5113.
    [3] Chen D Q, Cui Y F, Li Z H, et al. Watch out for the tailings pond, a sharp edge hanging over our heads: Lessons learned and perceptions from the Brumadinho tailings dam failure disaster[J]. Remote Sensing, 2021,13(9):1775−1796. doi: 10.3390/rs13091775
    [4] Rey N J, Demers I, Bussière B, et al. A geochemical evaluation of a monolayer cover with an elevated water table for the reclamation of the Doyon-Westwood tailings ponds, Canada[J]. Environmental Earth Sciences, 2020,79:58−69. doi: 10.1007/s12665-019-8797-8
    [5] Zhao X, Fourie A, Qi C C. Mechanics and safety issues in tailing-based backfill: A review[J]. International Journal of Minerals, Metallurgy and Materials, 2020,27(9):1165−1178. doi: 10.1007/s12613-020-2004-5
    [6] Li X S, Li Q H, Hu Y J. Study on three-dimensional dynamic stability of open-pit high slope under blasting vibration[J]. Lithosphere, 2022,2021:6426550. doi: 10.2113/2022/6426550
    [7] Tang Y, Lin H, Wang Y X. Rock slope stability analysis considering the effect of locked section[J]. Bulletin of Engineering Geology and the Environment, 2021,80:7241−7251. doi: 10.1007/s10064-021-02366-4
    [8] Peng J S, Guan Y H, Lin X J, et al. Comparative understanding of metal hyperaccumulation in plants: A mini-review[J]. Environmental Geochemistry and Health, 2020,43:1599−1607.
    [9] Li L, Sun J W, Jiang J J, et al. The effect of environmental regulation competition on haze pollution: Evidence from China’s province-level data[J]. Environmental Geochemistry and Health, 2021,44:3057−3080.
    [10] Tang Z E, Deng R J, Zhang J, et al. Regional distribution characteristics and ecological risk assessment of heavy metal pollution of different land use in an antimony mining area[J]. Human and Ecological Risk Assessment, 2019,26:1779−1794.
    [11] Jiang F, Ren B Z, Hursthouse A S, et al. Trace metal pollution in topsoil surrounding the Xiangtan man-ganese mine area (South-Central China): source identification, spatial distribution and assessment of potential eco-logical risks[J]. International Journal of Environmental Research and Public Health, 2018,15(11):2412−2427. doi: 10.3390/ijerph15112412
    [12] Luo X, Ren B Z, Hursthouse A S, et al. Potentially toxic elements (PTEs) in crops, soil, and water near Xiangtan manganese mine, China: Potential risk to health in the foodchain[J]. Environmental Geochemistry and Health, 2019,42:1965−1976.
    [13] Wang K, Yang P, Karen H E, et al. Status and development for the prevention and management of tailings dam failure accidents[J]. Chinese Journal of Engineering, 2018,40(5):526−539.
    [14] Li L, Jiang T, Zhou M, et al. Overall utilization of vanadium–titanium magnetite tailings to prepare lightweight foam ceramics[J]. Process Safety and Environmental Protection, 2020,139:305−314. doi: 10.1016/j.psep.2020.04.034
    [15] Zhu X Y, Sun N, Huang Y, et al. Preparation of full tailings-based foam ceramics and auxiliary foaming effect of vanadium-titanium magnetite tailings[J]. Journal of Non-Crystalline Solids, 2021,571:121063. doi: 10.1016/j.jnoncrysol.2021.121063
    [16] Gan C D, Cui S F, Wu Z Z, et al. Multiple heavy metal distribution and microbial community characteristics of vanadium-titanium magnetite tailing profiles under different management modes[J]. Journal of Hazardous Materials, 2022,429:128032. doi: 10.1016/j.jhazmat.2021.128032
    [17] Huang Y, Zhou D, Wang L, et al. Role of tailing colloid from vanadium-titanium magnetite in the adsorption and cotransport with vanadium[J]. Environmental Science and Pollution Research, 2023,30:34069−34084.
    [18] Li L, Jiang T, Chen B J, et al. Integrated utilization of vanadium-titanium magnetite tailings for synthesis of lightweight foamed ceramics: Effect of chemical composition on the properties and phase evolution[J]. Journal of Sustainable Metallurgy, 2022,8:646−657. doi: 10.1007/s40831-022-00517-9
    [19] Zhang Y, Zhang T A, Dreisinger D, et al. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching[J]. Journal of Hazardous Materials, 2019,369:632641.
    [20] Sun H Y, Wei X F, Sun X M, et al. Bioaccumulation and translocation characteristics of heavy metals in a soil-maize system in reclaimed land and surrounding areas of typical vanadium-titanium magnetite tailings[J]. Environmental Science, 2021,42(3):1166−1176.
    [21] Yu X M, Kang X, Li Y M, et al. Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata[J]. Environmental Pollution, 2019,255:113167. doi: 10.1016/j.envpol.2019.113167
    [22] Chen S Y, Fu X J, Chu M S, et al. Life cycle assessment of the comprehensive utilization of vanadium titan-magnetite[J]. Journal of Cleaner Production, 2015,101:122−128. doi: 10.1016/j.jclepro.2015.03.076
    [23] Chen T, Jian S, Xie X, et al. Research progress on comprehensive utilization of vanadium-titanium magnetite tailings[J]. Conservation and Utilization of Mineral Resources, 2021,41(2):174−178.
    [24] Xi C P, Zheng F, Xu J H, et al. Preparation of glass-ceramics foam using extracted titanium tailing and glass waste as raw materials[J]. Construction and Building Materials, 2018,190:896−909. doi: 10.1016/j.conbuildmat.2018.09.170
    [25] Wang Changlong, Ma Jingtao, Yang Fenghao, et al. Preparation and properties of composite cementitious materials containing vanadium-titanium iron ore tailings[J]. Iron Steel Vanadium Titanium, 2023,44(1):98−105. (王长龙, 马锦涛, 杨丰豪, 等. 钒钛铁尾矿复合胶凝材料的制备及性能[J]. 钢铁钒钛, 2023,44(1):98−105.

    Wang Changlong, Ma Jingtao, Yang Fenghao, et al. Preparation and properties of composite cementitious materials containing vanadium-titanium iron ore tailings[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 98-105
    [26] Liu Haijun, Zhao Lili. Experimental study on activation of vanadium-titanium magnetite tailings and its use as cement admixture[J]. Iron Steel Vanadium Titanium, 2020,41(4):97−102. (刘海军, 赵丽丽. 钒钛磁铁矿尾矿的活化及用作水泥混合材的试验研究[J]. 钢铁钒钛, 2020,41(4):97−102.

    Liu Haijun, Zhao Lili. Experimental study on activation of vanadium-titanium magnetite tailings and its use as cement admixture[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 97-102
    [27] 王长龙, 王肇嘉, 杨飞华, 等. 尾矿及钢渣制备新型绿色建筑材料[M]. 北京: 科学出版社, 2022.

    Wang Changlong, Wang Zhaojia, Yang Feihua, et al. Preparation of new green building materials from tailings and steel slag[M]. Beijing: Science Press, 2022.
    [28] 王长龙, 李颖, 蔡红, 等. 新型工业固废基混凝土[M]. 北京: 科学出版社, 2021.

    Wang Changlong, Li Ying, Cai Hong, et al. New type of concrete based industrial solid waste[M]. Beijing: Science Press, 2021.
    [29] Wang Xiugui, Qin Lianyin. Experimental study on preparation of high-strength concrete with vanadium-titanium magnetite tailings[J]. Iron Steel Vanadium Titanium, 2019,40(3):77−82. (王修贵, 秦连银. 利用钒钛磁铁矿尾矿制备高强度混凝土的试验研究[J]. 钢铁钒钛, 2019,40(3):77−82.

    Wang Xiugui, Qin Lianyin. Experimental study on preparation of high-strength concrete with vanadium-titanium magnetite tailings[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 77-82
    [30] Yang Fei, Sun Xiaomin. Preparation of ordinary portland clinker with vanadium-titanium magnetite tailings[J]. Iron Steel Vanadium Titanium, 2020,41(2):75−81. (杨飞, 孙晓敏. 利用钒钛磁铁矿尾矿制备普通硅酸盐水泥熟料的研究[J]. 钢铁钒钛, 2020,41(2):75−81.

    Yang Fei, Sun Xiaomin. Preparation of ordinary portland clinker with vanadium-titanium magnetite tailings[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 75-81
    [31] Shi Lei, Song Xiao. Influence of vanadium-titanium magnetite tailings on autoclaved aerated concrete blocks[J]. Iron Steel Vanadium Titanium, 2020,41(3):84−89. (石磊, 宋宵. 钒钛磁铁矿尾矿对蒸压加气混凝土砌块的影响[J]. 钢铁钒钛, 2020,41(3):84−89. doi: 10.7513/j.issn.1004-7638.2020.03.014

    Shi Lei, Song Xiao. Influence of vanadium-titanium magnetite tailings on autoclaved aerated concrete blocks[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 84-89 doi: 10.7513/j.issn.1004-7638.2020.03.014
    [32] Guan X, Wang J Y, Xiao F P. Sponge city strategy and application of pavement materials in sponge city[J]. Journal of Cleaner Production, 2021,303:127022. doi: 10.1016/j.jclepro.2021.127022
    [33] Xu Y S, Shen S L, Lai Y, et al. Design of sponge city: Lessons learnt from an ancient drainage system in Ganzhou, China[J]. Journal of Hydrology, 2018,563:900−908. doi: 10.1016/j.jhydrol.2018.06.075
    [34] Nguyen T T, Ngo H H, Guo W S, et al. Implementation of a specific urban water management-Sponge city[J]. Science of The Total Environment, 2019,652:147−162. doi: 10.1016/j.scitotenv.2018.10.168
    [35] Yu T J, Liu D G, Zhang H T, et al. Influence of pore water phase change on service performance for permeable pavement in sponge city[J]. Water Science and Technology, 2021,84(12):3769−3779. doi: 10.2166/wst.2021.459
    [36] Qi B W, Gao S W, Xu P L. The application of rubber aggregate-combined permeable concrete mixture in sponge city construction[J]. Coating, 2023,13(1):87−100. doi: 10.3390/coatings13010087
    [37] Song C. Application of nature-based measures in China's sponge city initiative: Current trends and perspectives[J]. Nature-Based Solutions, 2022,2:100010. doi: 10.1016/j.nbsj.2022.100010
    [38] Qin Z, Yao Y J, Zhao J W, et al. Investigation of migration rule of rainwater for sponge city roads under different rainfall intensities[J]. Environmental Geochemistry and Health, 2022,44:3395−3407. doi: 10.1007/s10653-021-01104-9
    [39] Li J H, Li X L, Liang S, et al. Preparation of water-permeable bricks derived from fly ash by autoclaving[J]. Construction and Building Materials, 2021,271:121556. doi: 10.1016/j.conbuildmat.2020.121556
    [40] Wang H F, Liu Y, Mei Z. Basic physical characteristics of the water-permeable brick with composite structure[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022,37:645−655. doi: 10.1007/s11595-022-2579-y
    [41] Lv R B, Liang S, Li X L, et al. Production of water-permeable ceramic bricks derived from fly ash via a simple pellet method: Mechanism of mechanical strength and permeability[J]. Construction and Building Materials, 2022,351:128989. doi: 10.1016/j.conbuildmat.2022.128989
    [42] Wang Y G, Gao S, Liu X M, et al. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3-N recovery benefits[J]. Journal of Hazardous Materials, 2019,378:120768. doi: 10.1016/j.jhazmat.2019.120768
    [43] Liu Y, Tang W, Singh R P. Study on compressive strength and water permeability of steel slag-fly ash mixed permeable brick[J]. Applied Sciences, 2019,9(8):1542−1552. doi: 10.3390/app9081542
    [44] Cai J W, Lv N W, Jia X Y, et al. Properties of permeable ceramic brick prepared with felsite tailing[J]. Journal of Building Engineering, 2021,44:103426. doi: 10.1016/j.jobe.2021.103426
    [45] Yang M, Ju C G, Xue K R, et al. Environmental-friendly non-sintered permeable bricks: Preparation from wrap-shell lightweight aggregates of dredged sediments and its performance[J]. Construction and Building Materials, 2021,273:121751. doi: 10.1016/j.conbuildmat.2020.121751
    [46] Liu L, Cheng X, Miao X W, et al. Preparation and characterization of majority solid waste based eco-unburned permeable bricks[J]. Construction and Building Materials, 2020,259:120400. doi: 10.1016/j.conbuildmat.2020.120400
    [47] He B J, Zhu J, Zhao D X, et al. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation[J]. Land Use Policy, 2019,86:147−157. doi: 10.1016/j.landusepol.2019.05.003
    [48] Luo P P, Liu L M, Wang S T, et al. Influence assessment of new inner tube porous brick with absorbent concrete on urban floods control[J]. Case Studies in Construction Materials, 2022,17:e01236. doi: 10.1016/j.cscm.2022.e01236
    [49] Asaeda T, Ca V T. Characteristics of permeable pavement during hot summer weather and impact on the thermal environment[J]. Building and Environment, 2000,35(4):363−375. doi: 10.1016/S0360-1323(99)00020-7
    [50] Seifeddine K, Amziane S, Toussaint E. Experimental investigation of physical characteristics to improve the cooling effect of permeable pavements[J]. Construction and Building Materials, 2022,345:128342. doi: 10.1016/j.conbuildmat.2022.128342
    [51] Han J, Wang C Q, Demg S H, et al. China’s sponge cities alleviate urban flooding and water shortage: a review[J]. Environmental Chemistry Letters, 2023,21:1−18. doi: 10.1007/s10311-022-01411-2
    [52] Sansalone J J, Kuang X, Ranieri V. Porous pavement as a hydraulic and filtration interface for urban drainage[J]. Journal of Irrigation and Drainage Engineering, 2008,134(5):666−674. doi: 10.1061/(ASCE)0733-9437(2008)134:5(666)
    [53] Fang M J, Wang X, Liu J J, et al. Design, application and performance improvement of eco-permeable pavement materials (Eco-PPMs): A review[J]. Construction and Building Materials, 2022,360:129558. doi: 10.1016/j.conbuildmat.2022.129558
    [54] Yan Z Q, Qing Z Q, Guo M, et al. Pilot and industrial scale tests of high-performance permeable bricks producing from ceramic waste[J]. Journal of Cleaner Production, 2020,254:120167. doi: 10.1016/j.jclepro.2020.120167
    [55] Kim Y, Lee Y, Kim M, et al. Preparation of high porosity bricks by utilizing red mud and mine tailing[J]. Journal of Cleaner Production, 2019,207:490−497. doi: 10.1016/j.jclepro.2018.10.044
    [56] Xu Sha, Cao Baoyue, Liu Xuan, et al. Preparation of permeable brick from activated sludge doped tailings and its properties[J]. Non-metallic Minerals, 2019,42(5):28−30. (徐珊, 曹宝月, 刘璇, 等. 活性污泥掺杂尾矿制备透水砖及性能研究[J]. 非金属矿, 2019,42(5):28−30.

    Xu S, Cao B Y, Liu X, et al. Study on preparation of permeable brick by activated sludge doping tailings and its performance[J]. Non-metallic Minerals, 2019, 42(5): 28-30.
    [57] Luo L Q, Li K Y, Fu W, et al. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials, 2020,232:117−250.
    [58] Wang Zhiyu, Guo Jialin, Li Chun. Study on the preparation and performance of iron tailing-based glass permeable bricks[J]. Mineral Protection and Utilization, 2019,34(4):66−70. (王之宇, 郭家林, 李春. 铁尾矿基玻璃透水砖的制备及性能研究[J]. 矿产保护与利用, 2019,34(4):66−70. doi: 10.13779/j.cnki.issn1001-0076.2019.04.011

    Wang Zhiyu, Guo Jialin, Li Chun. Study on the preparation and performance of iron tailing-based glass permeable bricks[J]. Mineral Protection and Utilization, 2019, 34(4): 66-70 doi: 10.13779/j.cnki.issn1001-0076.2019.04.011
    [59] 叶鹏飞. 钒钛铁尾矿高强烧结透水砖的制备及机理研究[D]. 邯郸: 河北工程大学, 2021.

    Ye Pengfei. Preparation and mechanism of high-strength permeable brick from vanadium-titanium iron ore tailings[D]. Handan: Hebei University of Engineering, 2021.
    [60] Wang Shaoxi, Zhang Kaifan, Zhang Suhua, et al. Preparation and properties study of high-strength sintered permeable brick with multiple solid waste[J]. Metal Mine, 2021,(9):206−215. (王绍熙, 张凯帆, 张苏花, 等. 多元固废制备高强烧结透水砖及其性能研究[J]. 金属矿山, 2021,(9):206−215. doi: 10.19614/j.cnki.jsks.202109029

    Wang Shaoxi, Zhang Kaifan, Zhang Suhua, et al. Preparation and properties study of high-strength sintered permeable brick with multiple solid waste[J]. Metal Mine, 2021(9): 206-215 doi: 10.19614/j.cnki.jsks.202109029
    [61] Wang C L, Ren Z Z, Zheng Y C, et al. Effects of heat treatment system on mechanical strength and crystallinity of CaO-MgO-Al2O3-SiO2 glass-ceramics containing coal gangue and iron ore tailings[J]. Journal of New Materials for Electrochemical Systems, 2019,22(2):70−78.
    [62] Zhang J J, Liu B, Zhang S G. A review of glass ceramic foams prepared from solid wastes: Processing, heavy-metal solidification and volatilization, applications[J]. Science of The Total Environment, 2021,781:146727. doi: 10.1016/j.scitotenv.2021.146727
    [63] Liu X M, Li B, Wu Y F. The pretreatment of non-ferrous metallurgical waste slag and its research progress in the preparation of glass-ceramics[J]. Journal of Cleaner Production, 2023,404:136930. doi: 10.1016/j.jclepro.2023.136930
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回