留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧结过程中铁矿粉粒度组成对适宜黏结相量的影响

范欣生 都昱 郭兴敏

范欣生, 都昱, 郭兴敏. 烧结过程中铁矿粉粒度组成对适宜黏结相量的影响[J]. 钢铁钒钛, 2023, 44(6): 117-125. doi: 10.7513/j.issn.1004-7638.2023.06.017
引用本文: 范欣生, 都昱, 郭兴敏. 烧结过程中铁矿粉粒度组成对适宜黏结相量的影响[J]. 钢铁钒钛, 2023, 44(6): 117-125. doi: 10.7513/j.issn.1004-7638.2023.06.017
Fan Xinsheng, Du Yu, Guo Xingmin. Effect of particle size composition of iron ore fines on the suitable amount of bonding phase in sintering process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 117-125. doi: 10.7513/j.issn.1004-7638.2023.06.017
Citation: Fan Xinsheng, Du Yu, Guo Xingmin. Effect of particle size composition of iron ore fines on the suitable amount of bonding phase in sintering process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 117-125. doi: 10.7513/j.issn.1004-7638.2023.06.017

烧结过程中铁矿粉粒度组成对适宜黏结相量的影响

doi: 10.7513/j.issn.1004-7638.2023.06.017
基金项目: 国家自然科学基金资助项目(U22A20175,51774029)。
详细信息
    作者简介:

    范欣生,1996年出生,男,河北隆化人,硕士研究生,研究方向:烧结,E-mail:xinshengsunny@163.com

    通讯作者:

    郭兴敏,1959年出生,男,博士,教授,研究方向:烧结、传感器、电化学等,E-mail:guoxm@ustb.edu.cn

  • 中图分类号: TF046

Effect of particle size composition of iron ore fines on the suitable amount of bonding phase in sintering process

  • 摘要: 铁酸钙是高碱度烧结矿的主要黏结相,其生成量与烧结矿质量有着密切关系,而适宜的黏结相量也是烧结过程中节能降碳的一个重要因素。以铁酸一钙(CF)为初始黏结相,用赤铁矿(Fe2O3)模拟铁矿粉,研究铁矿粉粒度组成对烧结中适宜的黏结相量的影响。结果表明,随着铁矿粉粒级的增加,获得同一抗压强度时烧结试样所需的黏结相量增加。相同粒度范围下,随着CF含量增加,抗压强度呈先增大后减小的变化趋势,其最大值对应于该粒度下适宜的黏结相量。不同粒级范围下,随着Fe2O3粒级的增加,最大抗压强度呈下降趋势。同时,适宜黏结相量向增加方向偏移。试验还发现,CF与Fe2O3反应有低熔点液相—高铁铁酸钙(Ca3.6Fe14.4O25.2)生成,增加了烧结中黏结相量。新相Ca3.6Fe14.4O25.2的生成随着CF含量增加和Fe2O3粒级减小而增加,揭示了初始黏结相与实际黏结相生成量的关系。
  • 图  1  IPP 6.0对试样断面光学照片上物相的定量流程

    Figure  1.  IPP 6.0 quantitative process of phase on the optical photos of sample cross-section

    图  2  1250 ℃下粒级≤0.15 mm赤铁矿粉加入不同量CF烧结10 min后试样断面光学形貌

    Figure  2.  Optical photos of cross-section of sample where adding different amount of CF into hematite fines with particle size ≤0.15 mm after sintering at 1250 ℃ for 10 min

    图  3  1250 ℃下烧结10 min粒级≤0.15 mm赤铁矿粉试样黏结相生成量与加入CF量的关系

    Figure  3.  Relationship of bonding phase amount with CF added in hematite samples with particle size ≤ 0.15 mm after sintering at 1250 ℃ for 10 min

    图  4  加入10%和20%CF不同粒级赤铁矿粉1250 ℃烧结10 min试样黏结相量变化

    Figure  4.  Relationship of bonding phase amount of sample with different particle size of hematite fines addition of 10% and 20% CF respectively afrer sintering at 1250 ℃ for 10 min

    图  5  加入10%和20%CF不同粒级赤铁矿粉试样1250 ℃烧结10 min的断面光学照片

    Figure  5.  Optical photos of cross-section of samples with different particle size hematite fines addition of 10% and 20%CF respectively after sintering at 1250 ℃ for 10 min

    图  6  1250 ℃烧结10 min后不同粒级赤铁矿粉中加入不同量CF烧结试样的抗压强度变化

    Figure  6.  Variation curve of compressive strength of sintered samples with different amount of CF in different particle size of hematite fines

    图  7  不同粒级赤铁矿粉试样1250 ℃烧结10 min对应的适宜黏结相量变化

    Figure  7.  Relationship of suitable amount of bonding phase with particle size of hematite fines in sample sintered at 1250 ℃ for 10 min

    图  8  粒级≤0.15 mm赤铁矿粉中加入不同量CF在1250 ℃烧结10 min后试样内平均孔径变化

    Figure  8.  Relationship of average pore diameter with different amounts of CF in samples with particle size ≤ 0.15 mm hematite after sintered at 1250 ℃ for 10 min

    图  9  1250 ℃烧结10 min后不同粒级赤铁矿粉中不加CF试样的断面光学照片

    Figure  9.  Optical photo of cross-section of samples with different particle size of hematite fines without CF after sintered at 1250 ℃ for 10 min

    图  10  1250 ℃烧结10 min后不同粒级Fe2O3中不加CF试样的抗压强度和平均孔径关系

    Figure  10.  Relationship of compressive strength with average pore diameter in samples with different particle sizes of hematite fines without CF after sintered at 1250 ℃ for 10 min

    图  11  粒级≤0.15 mm 赤铁矿粉加入不同CF量在1250 ℃烧结10 min试样XRD谱

    Figure  11.  XRD pattern of samples with particle size ≤0.15 mm hematite fines with different amounts of CF after sintered at 1250 ℃ for 10 min

    图  12  不同粒级赤铁矿粉中加入20% CF试样1250 ℃烧结10 min后XRD谱

    Figure  12.  XRD pattern of samples with different particle size hematite fines and 20% CF after sintered at 1250 ℃ for 10 min

    图  13  粒级≤0.15 mm赤铁矿粉中加入不同量CF在1250 ℃烧结10 min试样断面的SEM形貌及能谱

    Figure  13.  SEM photos and EDS images of samples of ≤ 0.15 mm hematite fines with different amounts of CF after sintered at 1250 ℃ for 10 min

    表  1  试样的混合组成

    Table  1.   Mixed compositions of samples

    试样成分组成/gw(CF)/%w(Fe2O3)/%
    CFFe2O3
    10.004.000100
    20.203.80595
    30.403.601090
    40.603.401585
    50.803.202080
    61.202.803070
    71.602.404060
    82.002.005050
    下载: 导出CSV

    表  2  粒级≤0.15 mm赤铁矿粉中加入不同量CF烧结试样断面EDS分析结果

    Table  2.   EDS result of cross-section of sintered sample of ≤0.15 mm hematite fines with different amounts of CF

    w(CF)/%位置元素含量(y/%)物相
    FeCaO
    10P128.914.456.7CF
    P232.08.060.0Ca3.6Fe14.4O25.2
    P342.50.257.3Fe2O3
    20P427.914.158.0CF
    P532.57.659.9Ca3.6Fe14.4O25.2
    P641.80.258.0Fe2O3
    下载: 导出CSV
  • [1] 龙红明. 铁矿粉烧结原理与工艺[M]. 北京: 冶金工业出版社, 2010: 5-9.

    Long Hongming. Sintering principle and technology of iron ore powder[M]. Beijing: Metallurgical Industry Press, 2010: 5-9.
    [2] 范晓慧. 铁矿烧结优化配矿原理与技术[M]. 北京: 冶金工业出版社, 2013: 62-72.

    Fan Xiaohui. Principle and technology of optimized ore blending by sintering of iron ore[M]. Beijing: Metallurgical Industry Press, 2013: 62-72.
    [3] 郭兴敏. 烧结过程铁酸钙生成及其矿物学[M]. 北京: 冶金工业出版社, 1999: 59-64.

    Guo Xingmin. Formation of calcium ferrite during sintering and its mineralogy[M]. Beijing: Metallurgical Industry Press, 1999: 59-64.
    [4] Mumme W G, Clout J M F, Gable R W. The crystal structure of SFCA-I, Ca3.18Fe3+14.66Al 1.34Fe2+0.82O28, a homologue of the aenigmatite structure type and new crystal structure refinements of ß-CFF, Ca2.99Fe3+14.30Fe2+0.55O25 and Mg-free SFCA, Ca2.45Fe3+9.04Al1.74Fe2+0.16Si0.6O20[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 1998,173(1):93−117.
    [5] Xin R F, Du Y, Guo X M. Effect of alumina on crystallization behavior of calcium ferrite in Fe2O3-CaO-SiO2-Al2O3 system[J]. Materials, 2022,15(15):5257. doi: 10.3390/ma15155257
    [6] Ding X, Guo X M. The formation process of silico ferrite of calcium (SFC) from binary calcium ferrite[J]. Metallurgical and Materials Transactions B, 2014,45(4):1221−1231. doi: 10.1007/s11663-014-0041-z
    [7] Liu Zhengjian, Wang Jiabao, Zhang Jianliang, et al. Status of energy consumption and prospect of consumption reduction technology in blast furnace[J]. Journal of Iron and Steel Research, 2022,14(1):1−14. (刘征建, 王家保, 张建良, 等. 高炉能耗现状及降耗技术展望[J]. 钢铁研究学报, 2022,14(1):1−14.

    Liu Zhengjian, WangJiabao, Zhang Jianliang, et al. Status of energy consumption and prospect of consumption reduction technology in blast furnace[J]. Journal of Iron and Steel Research, 2022, 14(1): 1-14.
    [8] Dong J J, Wang G, Gong Y G, et al. Effect of high alumina iron ore of gibbsite type on sintering performance[J]. Ironmaking & Steelmaking, 2014,42(1):34−40.
    [9] Peng J, Zhang L, Liu L X, et al. Relationship between liquid fluidity of iron ore and generated liquid content during sintering[J]. Metallurgical and Materials Transactions B, 2017,48(1):538−544. doi: 10.1007/s11663-016-0827-2
    [10] Lv X W, Bai C G, Deng Q Y, et al. Behavior of liquid phase formation during iron ores sintering[J]. ISIJ International, 2022,51(5):722−727.
    [11] Wu Shengli, Du Jianxin, Ma Hongbin, et al. Self-intensity of bonding phase in iron ores during sintering[J]. Journal of University of Science and Technology Beijing, 2005,27(4):69−72. (吴胜利, 杜建新, 马洪斌, 等. 铁矿粉烧结黏结相自身强度特性[J]. 北京科技大学学报, 2005,27(4):69−72.

    Wu Shengli, Du Jianxin, Ma Hongbin, et al. Self-intensity of bonding phase in iron ores during sintering[J]. Journal of University of Science and Technology Beijing, 2005, 27(4): 69-72.
    [12] Huang Zhucheng, Jiang Yuan, Mao Xiaoming, et al. Study on rational distribution of fuel in sintering iron ore[J]. Journal of Central South University: Natural Science Edition, 2006,(5):884−890. (黄柱成, 江源, 毛晓明, 等. 铁矿烧结中燃料合理分布研究[J]. 中南大学学报:自然科学版, 2006,(5):884−890.

    Huang Zhucheng, Jiang Yuan, Mao Xiaoming, et al. Study on rational distribution of fuel in sintering iron ore[J]. Journal of Central South University: Natural Science Edition, 2006(5): 884-890.
    [13] Liu Lina, Han Xiuli. A review on influence of sintering quality[J]. Journal of Hebei Institute of Technology, 2006,28(2):18−22. (刘丽娜, 韩秀丽. 影响烧结矿质量的因素[J]. 河北理工学院学报, 2006,28(2):18−22.

    Liu Lina, Han Xiuli. A review on influence of sintering quality[J]. Journal of Hebei Institute of Technology, 2006, 28(2): 18-22.
    [14] 陈耀铭. 烧结球团矿微观结构[M]. 长沙: 中南大学出版社, 2011: 69.

    Chen Yaoming. Microstructure of sintered pellets[M]. Changsha: Central South University Press, 2011: 69.
    [15] 张汉泉. 烧结球团理论与工艺[M]. 北京: 化学工业出版社, 2015: 70-75.

    Zhang Hanquan. Theory and technology of sintered pellets[M]. Beijing: Chemical Industrial Press, 2015: 70-75.
    [16] 李光森. 黏结相对烧结矿强度的影响机理及其合理组分的探讨[D]. 沈阳: 东北大学, 2008: 4-6.

    Li Guangsen. Discussion on the influence mechanism of bonding on the strength of sinter and its reasonable components[D]. Shenyang: Northeastern University, 2008: 4-6.
    [17] Chen Hong, Zhang Meifang. Study on reactivity of iron ore powder[J]. Bao-Steel Technology, 2001,(5):35−38. (陈宏, 张美芳. 铁矿粉反应性研究[J]. 宝钢技术, 2001,(5):35−38.

    Chen Hong, Zhang Meifang. Study on reactivity of iron ore powder[J]. Bao-Steel Technology, 2001(5): 35-38.
    [18] Gao Feng. Production practice of high precision powder and low silicon sintering in TISCO[J]. Sintering and Pelletizing, 2004,29(6):38−41. (高峰. 太钢高精粉低硅烧结生产实践[J]. 烧结球团, 2004,29(6):38−41.

    Gao Feng. Production practice of high precision powder and low silicon sintering in TISCO[J]. Sintering and Pelletizing, 2004, 29(6): 38-41.
    [19] Hida Y, Okazaki J, Itoh K, et al. Formation mechanism of acicular calcium ferrite of iron ore sinter[J]. Tetsu-to-Hagane, 1987,73(15):1893−1900. doi: 10.2355/tetsutohagane1955.73.15_1893
    [20] Scarlett N V Y, Madsen I C, Pownceby M I, et al. In situ X-ray diffraction analysis of iron ore sinter phases[J]. Journal of Applied Crystallography, 2004,37(3):362−368. doi: 10.1107/S002188980400353X
    [21] Scarlett N V Y, Pownceby M I, Madsen I C, et al. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter[J]. Metallurgical and Materials Transactions B, 2004,35B(5):929−936.
    [22] 李光森, 金明芳, 姜鑫, 等. 烧结矿黏结相熔化特性的研究[C]//中国钢铁年会论文集. 北京: 冶金工业出版社, 2007.

    Li Guangsen, Jin Mingfang, Jiang Xin, et al. Research on melting characteristics of sinter bonding phase[C]// Proceedings of China Steel Annual Conference. Beijing: Metallurgical Industry Press, 2007.
    [23] Liu Ran, Liu Chaoqing, Lü Qing, et al. Study on liquid phase generation of vanadium-titanium sinter with moderate titanium content[J]. Iron Steel Vanadium Titanium, 2014,35(5):72−77. (刘然, 刘朝卿, 吕庆, 等. 中钛型钒钛烧结矿液相量的研究[J]. 钢铁钒钛, 2014,35(5):72−77.

    Liu Ran, Liu Chaoqing, Lv Qing, et al. Study on liquid phase generation of vanadium-titanium sinterwith moderate titanium content[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 72-77.
    [24] Cores A, Babich A, Muniz M, et al. The influence of different iron ores mixtures composition on the quality of sinter[J]. ISIJ International, 2010,50(8):1089−1098. doi: 10.2355/isijinternational.50.1089
    [25] Webster N A S, Pownceby M I, Madsen I C, et al. Effect of oxygen partial pressure on the formation mechanisms of complex Ca-rich ferrites[J]. ISIJ International, 2013,53(5):774−781. doi: 10.2355/isijinternational.53.774
    [26] Webster N A S, Churchill J G, Tufaile F, et al. Fundamentals of silico-ferrite of calcium and aluminium(SFCA) and SFCA-Ⅰ iron ore sinter bonding phase formation: effects of titanmagnetite-based ironsand and titanium addition[J]. ISIJ International, 2016,56(10):1715−1722. doi: 10.2355/isijinternational.ISIJINT-2016-162
    [27] Webster N A S, Pownceby M I, Pattel R. Fundamentals of silico-ferrite of calcium and aluminium(SFCA) and SFCA-Ⅰ iron ore sinter bonding phase formation: effects of mill scale addition[J]. Power Diffraction, 2017,32(S2):85−89. doi: 10.1017/S088571561700080X
    [28] Ding X, Guo X M, Ma C Y, et al. Effect of SiO2 on the crystal structure stability of SFC at 1473 K (1200 ℃)[J]. Metallurgical and Materials Transactions B, 2015,46(2):1147−1153.
    [29] Guo H, Guo X M. Effect of aluminum dissolved in hematite on formation of calcium ferrites at 1473 K[J]. Metallurgical and Materials Transactions B, 2018,49B:1974−1984.
    [30] Wang Ruying. The study on microhardness of sinter[J]. Sintering and Pelletizing, 1995,(3):9−13. (王如英. 烧结矿显微硬度的研究[J]. 烧结球团, 1995,(3):9−13.

    Wang Ruying. The study on microhardness of sinter[J]. Sintering and Pelletizing, 1995(3): 9-13.
    [31] Qiao Ruiqing, Du Hegui. Formation mechanism of micropores in low fluoride sinter and its influence on sinter strength[J]. Journal of Iron and Steel Research, 1999,11(6):1. (乔瑞庆, 杜鹤桂. 低氟烧结矿微气孔的形成机理及对烧结矿强度的影响[J]. 钢铁研究学报, 1999,11(6):1.

    Qiao Ruiqing, Du Hegui. Formation mechanism of micropores in low fluoride sinter and its influence on sinter strength[J]. Journal of Iron and Steel Research, 1999, 11(6): 1.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  31
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-01
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回