留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

攀钢细粒级高品位钒钛磁铁精矿烧结试验研究

王禹键 胡鹏

王禹键, 胡鹏. 攀钢细粒级高品位钒钛磁铁精矿烧结试验研究[J]. 钢铁钒钛, 2023, 44(6): 126-132. doi: 10.7513/j.issn.1004-7638.2023.06.018
引用本文: 王禹键, 胡鹏. 攀钢细粒级高品位钒钛磁铁精矿烧结试验研究[J]. 钢铁钒钛, 2023, 44(6): 126-132. doi: 10.7513/j.issn.1004-7638.2023.06.018
Wang Yujian, Hu Peng. Experimental study on sintering of fine grained high-grade vanadium titanium magnetite concentrate from Pangang[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 126-132. doi: 10.7513/j.issn.1004-7638.2023.06.018
Citation: Wang Yujian, Hu Peng. Experimental study on sintering of fine grained high-grade vanadium titanium magnetite concentrate from Pangang[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 126-132. doi: 10.7513/j.issn.1004-7638.2023.06.018

攀钢细粒级高品位钒钛磁铁精矿烧结试验研究

doi: 10.7513/j.issn.1004-7638.2023.06.018
详细信息
    作者简介:

    王禹键,1987年出生,四川宜宾人,冶金工程硕士,高级工程师,主要从事矿物加工及高炉炼铁研究方向,E-mail:wang2262039@126.com

  • 中图分类号: TF046

Experimental study on sintering of fine grained high-grade vanadium titanium magnetite concentrate from Pangang

  • 摘要: 针对高品位钒钛磁铁矿的理化性能,开展了单烧对比试验、高品位矿不同替代配比试验和最高替代配比条件下烧结燃料配比、混合料水份及料层厚度对烧结技术经济指标的参数寻优正交试验研究,试验研究表明,高品位矿具有高铁、低硅钛、粒度更细的特点,且对混合料水分控制非常敏感。随着烧结中高品位矿配比提高,烧结指标综合评分呈降低趋势,对该种烧结矿的技术经济指标的影响从大到小依次是水分、燃料配比、料层厚度,实验室得到的该种烧结矿最优烧结条件为混合料水6.5%,燃料比4.2%,料层厚度670 mm。工业试验结果表明,在烧结中配加20%的该种矿物,烧结矿TFe品位提高0.8个百分点, TiO2含量降低0.6个百分点,转鼓指数基本不变,烧结烟气中SiO2浓度降低22%。
  • 图  1  高品位矿形貌

    Figure  1.  The high-grade mineral phase morphology

    图  2  攀精矿形貌

    Figure  2.  PG mineral phase morphology

    图  3  混合料湿筛/干筛粒度组成

    Figure  3.  Composition of wet/dry sieve particle size of mixture

    图  4  水分7.1%时混合料外观形态

    Figure  4.  Diagram of moisture 7.1% mixture

    图  5  不同配比试验烧结矿化学成分

    Figure  5.  Chemical composition of sinter experimental

    图  6  不同配比烧结试验综合评分测算

    Figure  6.  Comprehensive score of sintering experiment

    图  7  正交试验烧结矿主要技术经济指标

    Figure  7.  Main indicators of orthogonal experimental sintering

    表  1  试验用含铁原料主要化学成分

    Table  1.   Main chemical compositions of iron-containing raw materials %

    矿石TFeSiO2CaOV2O5TiO2S
    攀精矿53.703.600.400.5612.250.713
    高品位矿61.72.800.70.706.080.669
    南非粉64.04.750.220.02
    国高粉58.357.053.690.091.320.74
    中 粉42.3222.773.260.040.300.06
    下载: 导出CSV

    表  2  铁精矿的粒度组成对比

    Table  2.   Comparison of grain size

    名 称占比/%Dcp/
    mm
    >0.074 mm0.074~0.048 mm<0.048 mm
    攀精矿33.4619.9446.600.0359
    高品位矿1.0812.8586.070.0296
    下载: 导出CSV

    表  3  矿物的物相组成及质量分数占比

    Table  3.   Mineral phase compositions and ratios %

    矿名钛磁铁矿钛铁矿钛辉石钛赤铁矿铁橄榄石其他
    攀精矿734.62.86.96.95.8
    高品位矿80.45.13.229.3
    下载: 导出CSV

    表  4  两种单烧烧结矿化学分析及指标

    Table  4.   Chemical analysis and index of single sinter

    编号w/%R2烧结速度/(mm·min−1成品率/%转鼓强度/%
    TFeFeOSiO2CaOTiO2
    DD49.858.344.678.579.601.798.9369.6058.13
    DG53.648.444.188.394.981.8013.1469.6750.47
    下载: 导出CSV

    表  5  单烧试验烧结矿冶金性能检测

    Table  5.   Metallurgical properties of single sintering experiment

    编号软化开始温度/℃软化终了温度/℃软化区间/℃压差陡升温度/℃开始滴落温度/℃熔滴区间/℃中温还原率/%
    DD10921167721206148227678.49
    DG10811162811201147727680.16
    下载: 导出CSV

    表  6  不同配比烧结试验配料方案

    Table  6.   Sintering experimental proportioning of different proportions %

    方案高品位矿攀精矿进口矿国高粉中 粉溶剂燃料
    S047.510214.312.25
    S11050166.512.55
    S22039.7166.912.45
    S33029.3167.412.35
    S44020.5166.911.65
    S55011.6166.4115
    S6602.716610.35
    S776.28.510.35
    下载: 导出CSV

    表  7  不同配比烧结试验中各组烧结矿冶金性能检测

    Table  7.   Metallurgical properties of sinter in each group of sintering experiment

    编号软化开始温度/℃软化终了温度/℃软化区间温度/℃压差陡升温度/℃开始滴落温度/℃熔滴区间温度/℃中温还原率/%
    JZ10811150691183146528277.67
    S410801155751194146727381.77
    S610931165721201145024982.79
    S710921158661197146126482.39
    下载: 导出CSV

    表  8  L9正交试验方案

    Table  8.   L9 orthogonal experimental scheme

    编号水分/%焦粉/%料层厚度/mm
    中心点7.04.2690
    Z16.53.8650
    Z26.54.2660
    Z36.54.6670
    Z47.03.8660
    Z57.04.2670
    Z67.04.6650
    Z77.53.8670
    Z87.54.2650
    Z97.54.6660
    下载: 导出CSV

    表  9  正交试验极差分析

    Table  9.   Orthogonal experimental analysis

    水分/%焦粉配比/%料层厚度/mm
    水平(1)均值K1103.23100.0298.74
    水平(2)均值K298.93101.15100.07
    水平(3)均值K398.1998.44101.17
    R极差5.042.712.42
    最优组水平(1)水平(2)水平(3)
    下载: 导出CSV

    表  10  正交验证试验烧结矿技经指标

    Table  10.   Orthogonal verification index of experimental sinter

    编号烧结速度/(mm·min−1成品率/%转鼓强度/%
    中心点组14.3776.5158.70
    正交最优组13.8976.4758.13
    下载: 导出CSV

    表  11  工业试验烧结检测结果

    Table  11.   Results of industrial sintering test

    项类w/%R2点火温度/℃台时产量/(t·h−1)烟气SO2浓度×106转鼓指数/%
    TFeFeOSiO2TiO2
    基准期50.047.935.636.611.861085.71315.485087.0366.99
    阶段150.357.795.616.461.871076.67311.685023.7067.94
    阶段250.648.135.626.341.831100.20301.304605.3667.12
    阶段350.888.235.566.011.891123.20306.713967.3066.84
    下载: 导出CSV
  • [1] Zhang Dianbo, Wan Haiming, Zheng Jiang. Analysis on globaliron ore resources and China’s iron ore supply and demand[J]. China Metallurgy, 2004,(6):26−29. (张典波, 万海明, 郑江. 世界铁矿石资源情况及中国铁矿石供需态势[J]. 中国冶金, 2004,(6):26−29.

    Zhang Dianbo, Wan Haiming, Zheng Jiang. Analysis on globaliron ore resources and China’s iron ore supply and demand[J]. China Metallurgy, 2004(6): 26-29.
    [2] Tang Xianjue. The progress history of sintering industry in our country[J]. Sintering and Pelletizing, 2008,(4):3−4. (唐先觉. 我国烧结行业的技术进步[J]. 烧结球团, 2008,(4):3−4.

    Tang Xianjue. The progress history of sintering industry in our country[J]. Sintering and Pelletizing, 2008(4): 3-4.
    [3] 周传典. 高炉炼铁生产技术手册[M]. 北京: 冶金工业出版社, 2002.

    Zhou Chuandian. Blast furnace ironmaking production of technical manuals[M]. Beijing: Metallurgical Industry Press, 2002.
    [4] 陈耀铭, 陈锐. 烧结球团矿微观结构[M]. 长沙: 中南大学出版社, 2011.

    Chen Yaoming, Chen Rui. Microstructure of sinter and pellet[M]. Changsha: Central South University Press, 2011.
    [5] Bai Dongdong, Han Xiuli, Li Changcun, et al. Research on the influence of the mineralization process of vanadium titanium sinter on quality[J]. Iron Steel Vanadium Titanium, 2018,39(5):111−114. (白冬冬, 韩秀丽, 李昌存, 等. 钒钛烧结矿矿相结构对其冶金性能的影响[J]. 钢铁钒钛, 2018,39(5):111−114.

    Bai Dongdong, Han Xiuli, Li Changcun, et al. Research on the influence of the mineralization process of vanadium titanium sinter on quality[J]. Iron Steel Vanadium Titanium, 2018, 39(5): 111-114.
    [6] Zhu Deqing, Zhang Kecheng, He Aoping, et al. Eeffect of enhances granulating on high Fe and low SiO2 sinter[J]. Sintering and Pelletizing, 2003,(1):9−13. (朱德庆, 张克诚, 何奥平, 等. 强化制粒对高铁低硅混合料烧结的影响[J]. 烧结球团, 2003,(1):9−13.

    Zhu Deqing, Zhang Kecheng, He Aoping, et al. Eeffect of enhances granulating on high Fe and low SiO2 sinter[J]. Sintering and Pelletizing, 2003(1): 9-13.
    [7] Rao Jiating, Zhang Yixian, Yang Xiaodong, et al. Experimental study on sintering by adding high grade vanadium-bearing titaniferous magnetite concentrate at Pangang[J]. Iron Steel Vanadium Titanium, 2012,33(2):44−49. (饶家庭, 张义贤, 羊小东, 等. 攀钢烧结配加高品位钒钛磁铁精矿试验研究[J]. 钢铁钒钛, 2012,33(2):44−49.

    Rao Jiating, Zhang Yixian, Yang Xiaodong, et al. Experimental study on sintering by adding high grade vanadium-bearing titaniferous magnetite concentrate at Pangang[J]. Iron Steel Vanadium Titanium, 2012, 33(2): 44-49.
    [8] Lin Wenkang, Hu Peng. Influence of TiO2 content and basicity level on the metallogenic regularity of V-Ti sinter[J]. Iron Steel Vanadium Titanium, 2020,41(4):94−99. (林文康, 胡鹏. TiO2含量和碱度水平对钒钛烧结矿成矿规律的影响研究[J]. 钢铁钒钛, 2020,41(4):94−99.

    Lin Wenkang, Hu Peng. Influence of TiO2 content and basicity level on the metallogenic regularity of V-Ti sinter[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 94-99.
    [9] Wang Rongcheng, Fu Juying. Study on production of high Fe and low SiO2 sinter[J]. Iron and Steel, 2007,42(6):17−20. (王荣成, 傅菊英. 高铁低硅烧结技术研究[J]. 钢铁, 2007,42(6):17−20.

    Wang Rongcheng, Fu Juying. Study on production of high Fe and low SiO2 sinter[J]. Iron and Steel, 2007, 42(6): 17-20.
    [10] Wang Fubin, Liu Hefei, He Jianghong, et al. Analysis on operation process parameters of sintering and construction of sintering behavior model[J]. Sintering and Pelletizing, 2020,(4):29−34. (王福斌, 刘贺飞, 何江红, 等. 烧结运行工艺参数分析及烧结行为模型构建[J]. 烧结球团, 2020,(4):29−34.

    Wang Fubin, Liu Hefei, He Jianghong, et al. Analysis on operation process parameters of sintering and construction of sintering behavior model[J]. Sintering and Pelletizing, 2020(4): 29-34.
  • 加载中
图(7) / 表(11)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回