留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究

刘爽 陈慧琴 曹苗 车鑫 杨帆 冯毅

刘爽, 陈慧琴, 曹苗, 车鑫, 杨帆, 冯毅. 1800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究[J]. 钢铁钒钛, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
引用本文: 刘爽, 陈慧琴, 曹苗, 车鑫, 杨帆, 冯毅. 1800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究[J]. 钢铁钒钛, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
Liu Shuang, Chen Huiqin, Cao Miao, Che Xin, Yang Fan, Feng Yi. Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
Citation: Liu Shuang, Chen Huiqin, Cao Miao, Che Xin, Yang Fan, Feng Yi. Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019

1800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究

doi: 10.7513/j.issn.1004-7638.2023.06.019
基金项目: 山西省基础研究计划青年科学研究项目(202203021222210);山西省高等学校科技创新项目资助(2022L310)
详细信息
    作者简介:

    刘爽,1990年出生,男,博士,通讯作者,研究方向:先进高强钢成分设计及工艺研究,E-mail:liushuang@tyust.edu.cn

  • 中图分类号: TF76,TG156.31

Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels

  • 摘要: 对不同奥氏体化温度及保温时间条件下的1800 MPa级超高强热成形钢组织性能演变进行了试验研究,确定了最佳的热成形奥氏体化工艺制度。结果表明,当奥氏体化温度及保温时间分别达到840 ℃、3 min时,1800 MPa级超高强热成形钢淬火后的组织均为马氏体,且马氏体组织随着奥氏体化温度的升高及保温时间的增加逐渐粗大,抗拉强度逐渐下降。当奥氏体化温度为840 ℃时,抗拉强度、伸长率及强塑积分别可以达到1861.3 MPa、6.88%、12.81 GPa·%;当保温时间为3 min时,抗拉强度、伸长率及强塑积分别可以达到1851.28 MPa、6.84%、12.66 GPa·%。最佳奥氏体化工艺制度为:奥氏体化温度840 ℃,保温时间3 min。
  • 图  1  不同奥氏体化温度下热成形钢的淬火组织

    Figure  1.  Quenching microstructures under different austenitizing temperatures

    (a)810 ℃;(b)840 ℃;(c)870 ℃;(d)900 ℃;(e)930 ℃;(f)960 ℃;(g)990 ℃

    图  2  不同奥氏体化温度下热成形钢的淬火组织(SEM)

    Figure  2.  Quenching microstructures under different austenitizing temperatures

    (a)840 ℃;(b)870 ℃;(c)900 ℃;(d)930 ℃; (e)960 ℃;(f)990 ℃

    图  3  不同奥氏体化温度下热成形钢的力学性能变化

    Figure  3.  Changes of mechanical properties at different austenitizing temperatures

    图  4  不同保温时间下热成形钢的淬火组织

    Figure  4.  Quenching microstructures at different holding times

    (a)1 min;(b)3 min;(c)5 min;(d)7 min;(e)9 min

    图  5  不同保温时间下热成形钢的淬火组织(SEM)

    Figure  5.  Quenching microstructures at different holding times

    (a)3 min;(b)5 min;(c)7 min;(d)9 min

    图  6  不同保温时间下热成形钢的力学性能变化

    Figure  6.  Changes of mechanical properties at different holding times

    图  7  最佳工艺制度下超高强钢组织及EBSD表征

    (a)SEM 表征;(b)EBSD表征;(c)相邻晶粒取向差分布

    Figure  7.  Microstructure and EBSD analysis of the ultra-high strength steel with the optimum austenitizing process

    图  8  淬火后试样CSL晶界特征及占比

    (a)晶界分布;(b)重位点阵占比

    Figure  8.  Characteristics and proportion of the CSL grain boundary of the steel

    表  1  1800 MPa级热成形钢主要化学成分

    Table  1.   Main composition of 1800 MPa hot stamping steel %

    CMnSiAlBCrTiNb
    0.291.400.260.040.0030.250.0270.051
    下载: 导出CSV
  • [1] Zhang Y, Lai X, Zhu P. Lightweight design of automobile component using high strength steel based on dent resistance[J]. Materials & Design, 2006,27(1):64−68.
    [2] Li Jixiong , Wang Daoyong . Study on application of MSOT method for lightweight design of automobile body structure[J]. Advances in Mechanical Engineering, 2020, 12(10): 1-15.
    [3] Zheng Songlin. Lightweight design of automobile drive shaft based on the characteristics of low amplitude load strengthening[J]. Chinese Journal of Mechanical Engineering, 2011,24(6):1111. doi: 10.3901/CJME.2011.06.1111
    [4] Novotny S, Geiger M. Process design for hydroforming of lightweight metal sheets at elevated temperatures[J]. Journal of Materials Processing Tech, 2003,138(1-3):594−599. doi: 10.1016/S0924-0136(03)00042-6
    [5] Lechler J , Merklein M. Hot stamping of ultra high strength steels as a key technology for lightweight construction[C]// Materials Science & Technology Conference and Exhibition, MS&T'08. Germany: University Erlangen-Nuremberg, 2008.
    [6] Mori K I. New hot stamping processes of automobile lightweight ultra-high strength steel parts[J]. Journal of the Japan Society for Technology of Plasticity, 2012,53(613):98−102. doi: 10.9773/sosei.53.98
    [7] Xu Yunsong, Gong Yu, Du Hao, et al. A newly-designed hot stamping plus non-isothermal Q&P process to improve mechanical properties of commercial QP980 steel[J]. International Journal of Lightweight Materials and Manufacture, 2019,3(1):26−35.
    [8] Hu Ping , Liang Ying, He Bin. Hot stamping advanced manufacturing technology of lightweight car body[C]//The Formability of High-Strength Steel for Hot Stamping. Singapore: Springer, 2017: 165-192.
    [9] De Castro M R, Monteiro W A, Politano R. Enhancements on strength of body structure due to bake hardening effect on hot stamping steel[J]. The International Journal of Advanced Manufacturing Technology, 2019,100(1/4):771−782.
    [10] Scharifi E, Schade T, Ademaj A, et al. Characterization of mechanical properties, macroscopic deformation behavior and microstructure of functionally graded 22MnB5 steel[J]. Steel Research International, 2021,92(7):16.
    [11] Reitz A, Grydin O, Schaper M. Characterization of phase transformations during graded thermo-mechanical processing of press-hardening sheet steel 22MnB5[J]. Metallurgical and Materials Transactions A, 2020,51:5628−5638. doi: 10.1007/s11661-020-05976-x
    [12] Zhang Y, Wang W, Liu K, et al. Thermomechanical analysis on the frictional contact behavior of a high-strength steel 22MnB5–die steel H13 tribopair at 800 °C by experiment and finite-element simulation[C]//ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology , 2021, (208-210): 1994-1996.
    [13] Kong Ling, Peng Yan. In situ observation on microstructure evolution of 22MnB5 in hot stamping process[J]. Metallurgical Research and Technology, 2019,116(2):209. doi: 10.1051/metal/2018082
    [14] Liu S, Long M, Zhang S, et al. Study on the prediction of tensile strength and phase transition for ultra-high strength hot stamping steel[J]. Journal of Materials Research and Technology, 2020,9(6):14244−14253. doi: 10.1016/j.jmrt.2020.10.043
    [15] Liu S, Ai S, Long M, et al. Evolution of microstructures and mechanical properties of Nb-V alloyed ultra-high strength hot stamping steel in austenitizing process[J]. Materials, 2022,15:8197. doi: 10.3390/ma15228197
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回