留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时效温度对Monel K500合金微观结构与性能的影响

贾雪梅 王杰 刘庭耀 郑淮北 王勤英 西宇辰 董立谨

贾雪梅, 王杰, 刘庭耀, 郑淮北, 王勤英, 西宇辰, 董立谨. 时效温度对Monel K500合金微观结构与性能的影响[J]. 钢铁钒钛, 2023, 44(6): 160-166. doi: 10.7513/j.issn.1004-7638.2023.06.022
引用本文: 贾雪梅, 王杰, 刘庭耀, 郑淮北, 王勤英, 西宇辰, 董立谨. 时效温度对Monel K500合金微观结构与性能的影响[J]. 钢铁钒钛, 2023, 44(6): 160-166. doi: 10.7513/j.issn.1004-7638.2023.06.022
Jia Xuemei, Wang Jie, Liu Tingyao, Zheng Huaibei, Wang Qinying, Xi Yuchen, Dong Lijin. Effect of aging temperature on microstructure and properties of Monel K500 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 160-166. doi: 10.7513/j.issn.1004-7638.2023.06.022
Citation: Jia Xuemei, Wang Jie, Liu Tingyao, Zheng Huaibei, Wang Qinying, Xi Yuchen, Dong Lijin. Effect of aging temperature on microstructure and properties of Monel K500 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 160-166. doi: 10.7513/j.issn.1004-7638.2023.06.022

时效温度对Monel K500合金微观结构与性能的影响

doi: 10.7513/j.issn.1004-7638.2023.06.022
基金项目: 四川省自然科学基金(2022NSFSC0325)。
详细信息
    作者简介:

    贾雪梅,1997年出生,女,甘肃漳县人,研究生,研究方向:金属表面改性,E-mail:2629231247@qq.com

  • 中图分类号: TG146.1

Effect of aging temperature on microstructure and properties of Monel K500 alloy

  • 摘要: 采用固溶+时效工艺对Monel K500合金进行了时效处理,通过显微硬度和拉伸性能测试,以及OM、SEM、TEM、XRD等分析表征,研究了时效温度对Monel K500合金组织结构以及性能的影响。结果表明,时效处理后形成的多边形TiC颗粒强化相主要分布在晶界处,同时晶界处Al元素含量增多,过饱和固溶体发生脱溶分解,Al、Ti元素以Ni3(Al, Ti)第二相形式析出,合金硬度与强度提高。经电化学腐蚀后,该合金生成腐蚀产物NiO和CuO。随着时效温度的升高,第二相含量逐渐增加,但过高的温度导致第二相长大,故时效温度为560~700 ℃时,强化效果随着温度升高呈先升高后降低趋势。时效温度为630 ℃时,合金的硬度(HV)为329.26,强度994.56 MPa,均达到最大值,但耐腐蚀性能在该温度下反而有所降低。
  • 图  1  Monel K500合金微观组织形貌

    Figure  1.  Morphology of Monel K500 alloy

    图  2  不同温度时效处理后Monel K500合金OM以及SEM形貌

    Figure  2.  OM and SEM images of Monel K500 alloy aged at different temperature

    (a) (a1) (a2)560 ℃;(b) (b1) (b2) 630 ℃;(c) (c1) (c2) 700 ℃

    图  3  不同温度时效处理后Monel K500合金微观形貌

    (a)原始K500合金 ;时效后: (b) 560 ℃; (c) 630 ℃; (d) 700 ℃

    Figure  3.  Microstructure of Monel K500 alloy aged at different temperature

    图  4  不同温度时效处理后Monel K500合金XRD谱

    Figure  4.  XRD patterns of Monel K500 alloy aged at different temperatures

    图  5  Monel K500合金透射电镜形貌

      (a)(a1)(a2)聚焦离子束透射电镜制样;原始K500合金: (b1)晶面间距;(b2)高分辨透射图片;时效温度630 ℃合金: (c1) 晶面间距;(c2)高分辨透射图片;(c3)衍射花样1时效处理;(c4)衍射花样2

    Figure  5.  Transmission electron microscope image of Monel K500 alloy

    图  6  TEM暗场图像: (a)原始材料;(b)630 ℃时效处理

    Figure  6.  TEM dark field images: (a) Raw K500; (b) Monel K500 after aging treatment

    图  7  Monel K500合金不同温度时效处理后应力应变曲线

    Figure  7.  Stress-strain curves of Monel K500 alloy aged at different temperatures

    图  8  时效处理前后Monel K500合金拉伸断口形貌

    (a)、(e) 原始态K500;时效后: (b)、(f) 560 ℃ ;(c)、(g) 630 ℃ ;(d)、(h) 700 ℃

    Figure  8.  Morphologies of the fracture surface of Monel K500 alloy after heat treatment at different temperatures

    图  9  基材和不同时效温度Monel K500合金的极化曲线

    Figure  9.  Polarization curves of the original and aged Monel K500 alloy at different aging temperatures

    图  10  Monel K500电化学腐蚀机理示意

    Figure  10.  Schematic diagram showing electrochemical corrosion mechanism

    表  1  不同温度时效处理Monel K500合金元素分布

    Table  1.   Element distribution of Monel K500 alloy aged at different temperatures

    T/ ℃位置y/%
    AlTiNiCuFeMnSi
    2513.050.6866.9127.321.090.790.16
    2526.630.2264.2926.431.040.770.22
    56037.270.5666.2824.091.230.560.00
    56046.371.1965.9024.701.170.650.00
    63057.420.7563.6226.690.8990.640.00
    63067.361.2762.9926.561.130.620.07
    70077.410.9163.3226.491.190.690.00
    70086.431.2163.4626.860.960.940.14
    下载: 导出CSV

    表  2  630 ℃时效处理Monel K500合金元素分布

    Table  2.   Element distribution in Monel K500 alloy aged at 630 ℃

    区域y/%
    AlSiTiMnFeCuNi
    1#3.021.911.322.373.3330.66bal.
    2#3.401.901.262.451.3422.72bal.
    3#6.431.323.272.152.4323.43bal.
    4#4.151.701.062.240.2035.93bal.
    下载: 导出CSV

    表  3  不同温度时效处理后Monel K500合金及显微硬度

    Table  3.   Microhardness of Monel K500 alloy aged at different temperatures

    时效温度/ ℃显微硬度(HV)
    测点1测点2测点3测点4测点5平均值
    基材243.2229.1221.0249.3248.5238.22
    560242.0243.0275.7263.4240.8252.98
    630317.0333.7326.5340.6328.5329.26
    700273.0292.8268.5280.7296.8282.36
    下载: 导出CSV

    表  4  不同温度时效处理后K500合金拉伸力学性能

    Table  4.   Tensile properties of K500 alloy aged at different temperatures

    温度/ ℃拉伸速率/

    (mm·s−1)
    抗拉强度/

    MPa
    屈服强度/

    MPa
    延伸率/
    %
    基材1.5777.2029053.80
    5601.5863.9245544.02
    6301.5994.5662533.82
    7001.5976.0459527.73
    下载: 导出CSV

    表  5  电化学腐蚀测试结果

    Table  5.   Electrochemical corrosion test results

    温度/ ℃Ecorr/mVIcorr/(A·cm−2)腐蚀速率/(mm·a−1)
    基材−227.32.190×10−62.050
    560−221.91.185×10−61.959
    630−246.24.161×10−62.868
    700−224.92.089×10−62.003
    下载: 导出CSV
  • [1] Jia Chengtao. Characteristics and application of nickel base corrosion resistant alloy[J]. China New Technology and New Products, 2017,(1):2. (贾成涛. 镍基耐蚀合金特性及其应用研究分析[J]. 中国新技术新产品, 2017,(1):2.

    Jia Chengtao. Characteristics and application of nickel base corrosion resistant alloy [J]. China New Technology and New Products, 2017(1): 2.
    [2] Shi Xiaoyu, Wen Daosheng, Wang Shouren, et al. Investigation on friction and wear performance of laser cladding Ni-based alloy coating on brake disc[J]. Optik-International Journal for Light and Electron Optics, 2021,242:167227. doi: 10.1016/j.ijleo.2021.167227
    [3] Huang Xu, Zhang Jiacheng, Cheng Yuan, et al. Effect of h-BN addition on the microstructure characteristics, residual stress and tribological behavior of WC-reinforced Ni-based composite coatings[J]. Surface and Coatings Technology, 2021,405:126534. doi: 10.1016/j.surfcoat.2020.126534
    [4] Zhu Zongyuan, Li Bangjun. Study on performance of Monel K500 alloy electric submersible pump shaft[J]. Shanghai Metals, 1997,19(6):28−32. (朱宗元, 李邦俊. 蒙乃尔K500合金潜油电泵轴性能的研宄[J]. 上海金属, 1997,19(6):28−32.

    Zhu Zongyuan, Li Bangjun. Study on performance of Monel K500 alloy electric submersible pump shaft [J]. Shanghai Metals, 1997, 19(6): 28-32.
    [5] Xu Wei, Xu Ting, Wang Lulu, et al. Research status and prospect of hard particle reinforced nickel base alloy composite coating[J]. Machinery Manufacturing & Automation, 2016,45(2):40−42. (许伟, 徐婷, 汪路路, 等. 硬质颗粒增强镍基合金复合镀层研究现状与展望[J]. 机械制造与自动化, 2016,45(2):40−42. doi: 10.3969/j.issn.1671-5276.2016.02.011

    Xu Wei, Xu Ting, Wang Lulu, et al. Research status and prospect of hard particle reinforced nickel base alloy composite coating [J]. Machinery Manufacturing & Automation, 2016, 45(2): 40-42. doi: 10.3969/j.issn.1671-5276.2016.02.011
    [6] 李赛. GH600热变形行为及显微组织分析[D]. 鞍山: 辽宁科技大学, 2012.

    Li Sai. Thermal deformation behavior and microstructure analysis of GH600 [D]. Anshan: University of Science and Technology Liaoning, 2012.
    [7] Wang Rui. Research and aplication of nickel-based high temperature alloy[J]. Modern Chemical Research, 2017,(7):50−51. (王睿. 镍基高温合金的研究和应用[J]. 当代化工研究, 2017,(7):50−51.

    Wang Rui. Research and aplication of nickel-based high temperature alloy[J]. Modern Chemical Research, 2017(7): 50-51.
    [8] Yang Qian, Huang Wanzhen, Kong Fanzhi. Microstructure and corrosion resistance of laser cladding TiC-H13 coating[J]. Hot Working Technology, 2016,45(2):117−119,122. (杨倩, 黄宛真, 孔凡志. 激光熔覆TiC-H13涂层的微结构及耐腐蚀性能的研究[J]. 热加工工艺, 2016,45(2):117−119,122.

    Yang Qian, Huang Wanzhen, Kong Fanzhi. Microstructure and corrosion resistance of laser cladding TiC-H13 coating [J]. Hot Working Technology, 2016, 45(2): 117-119, 122.
    [9] Shahmoradi A R, Talebibahmanbigloo N, Javidparvar A A, et al. Studying the adsorption/inhibition impact of the cellulose and lignin compounds extracted from agricultural waste on the mild steel corrosion in HCl solution[J]. J Mol Liq, 2020,304:112751. doi: 10.1016/j.molliq.2020.112751
    [10] Zou Juntao, Lei Chunjuan, Hong Bo, et al. Effects of melt holding time on microstructure and hardness of silicon Monel alloy[J]. Hot Working Technology, 2013,42(15):22−25. (邹军涛, 雷春娟, 洪波, 等. 熔体保温时间对含硅蒙乃尔合金组织与硬度的影响[J]. 热加工工艺, 2013,42(15):22−25.

    Zou Juntao, Lei Chunjuan, Hong Bo, et al. Effects of melt holding time on microstructure and hardness of silicon Monel alloy [J]. Hot Working Technology, 2013, 42(15): 22-25.
    [11] Han Chang, Zou Juntao, Fan Zhikan. Effect of heat treatment on microstructure and hardness of monel alloy containing silicon[J]. Transactions of Materials and Heat Treatment, 2009,30(2):105−109. (韩昶, 邹军涛, 范志康. 热处理对含Si蒙乃尔合金组织及硬度的影响[J]. 材料热处理学报, 2009,30(2):105−109.

    Han Chang, Zou Juntao, Fan Zhikan. Effect of heat treatment on microstructure and hardness of monel alloy containing silicon[J]. Transactions of Materials and Heat Treatment, 2009, 30(2): 105-109.
    [12] Prabhu Ashwin G, Sathishkumar N, Pravinkumar K, et al. Heat treatment and analysis of nickel super alloy for gas turbine applications[J]. Materials Today: Proceedings, 2021,(39):1417−1421.
    [13] Zhang Zuogui, Liu Xiangfa, Bian Xiufang. Thermodynamics and kinetic of forming TiC in Al-Ti-C system[J]. ACTA Metallurgica Sinaca, 2000,36(10):1025−1029. (张作贵, 刘相法, 边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究[J]. 金属学报, 2000,36(10):1025−1029.

    Zhang Zuogui, Liu Xiangfa, Bian Xiufang. Thermodynamics and kinetic of forming TiC in Al-Ti-C system[J]. ACTA Metallurgica Sinaca, 2000, 36(10): 1025-1029
    [14] Dey G K, Tewari R, Rao P, et al. Precipitation hardening in nickel-copper base alloy monel K500[J]. Metallurgical and Materials Transactions A, 1993,24A:2709−2719.
    [15] 杨东光. Al、Si、Ti对时效Monel合金强化及抗氟性能的影响[D]. 昆明: 昆明理工大学, 2012.

    Yang Dongguang. Effect of Al、Si、Ti on strengthening and fluorine resistance of aging Monel alloy[D]. Kunming: Kunming University of Science and Technology, 2012.
    [16] Javidparvar A, Naderi R, Ramezanzadeh B. L-cysteine reduced/functionalized graphene oxide application as a smart/control release nanocarrier of sustainable cerium ions for epoxy coating anti-corrosion properties improvement[J]. J Hazard Mater, 2020,389:122−135.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  13
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回