留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低碳微合金钢热轧带状组织演变行为的研究

王博 李书恒 莫超群 张庆军

王博, 李书恒, 莫超群, 张庆军. 低碳微合金钢热轧带状组织演变行为的研究[J]. 钢铁钒钛, 2023, 44(6): 172-178. doi: 10.7513/j.issn.1004-7638.2023.06.024
引用本文: 王博, 李书恒, 莫超群, 张庆军. 低碳微合金钢热轧带状组织演变行为的研究[J]. 钢铁钒钛, 2023, 44(6): 172-178. doi: 10.7513/j.issn.1004-7638.2023.06.024
Wang Bo, Li Shuheng, Mo Chaoqun, Zhang Qingjun. The evolution of hot-rolled banded microstructure in low carbon microalloyed steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 172-178. doi: 10.7513/j.issn.1004-7638.2023.06.024
Citation: Wang Bo, Li Shuheng, Mo Chaoqun, Zhang Qingjun. The evolution of hot-rolled banded microstructure in low carbon microalloyed steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 172-178. doi: 10.7513/j.issn.1004-7638.2023.06.024

低碳微合金钢热轧带状组织演变行为的研究

doi: 10.7513/j.issn.1004-7638.2023.06.024
基金项目: 国家自然科学基金-青年基金(52004093);国家自然科学基金-区域创新发展联合基金重点项目(U21A20114)。
详细信息
    作者简介:

    王博,1986年出生,男, 辽宁铁岭人, 副教授, 通讯作者,研究方向: 钢铁冶金、铸坯质量控制, E-mail:adherent@163.com

    通讯作者:

    王博,1986年出生,男, 辽宁铁岭人, 副教授, 通讯作者,研究方向: 钢铁冶金、铸坯质量控制, E-mail:adherent@163.com

  • 中图分类号: TF76,TG335

The evolution of hot-rolled banded microstructure in low carbon microalloyed steels

  • 摘要: 低碳微合金钢在轧制过程中经常出现带状组织缺陷,对产品质量和使用性能都有着重要的影响。以某厂Q345热轧板坯为研究对象,通过对元素偏析,轧件热轧过程不同轧制道次、不同位置带状组织演变行为进行分析,结果表明,枝晶间溶质元素偏析是导致带状组织形成的本质原因。同时发现不同轧制道次和不同位置轧材,带状组织尺寸有着明显差异。不同轧制道次,相同位置的带状组织,压下率越大,带状组织越细小,压下率为50%时,中心带状组织宽度约为175 μm;压下率为67%时,中心带状组织宽度约为75 μm。相同轧制道次下,不同轧件位置的带状组织比较,可以发现厚度中心位置带状组织最为粗大,表面处最为细小。
  • 图  1  铸坯取样示意(单位:mm)

    Figure  1.  Schematic diagram of slab sampling

    图  2  偏析取样示意(单位:mm)

    Figure  2.  Schematic diagram of segregation sampling

    图  3  连铸板坯低倍组织

    Figure  3.  Macrostructure of continuous casting slab

    图  4  C、Mn偏析指数

    Figure  4.  Segregation index of C and Mn

    图  5  带状组织线扫描形貌

    Figure  5.  Line scan of banded structure

    图  6  带状组织形貌

    Figure  6.  SEM morphology of banded tissue

    图  7  第五道次工序不同位置的组织形貌

    Figure  7.  Structure morphology at different positions during the fifth process

    图  8  第七道次不同位置的组织形貌

    Figure  8.  Structure morphology at different positions during the seventh pass

    图  9  第九道次不同位置的组织形貌

    Figure  9.  Structure morphology at different positions during the ninth pass

    图  10  不同位置带状组织宽度的变化

    Figure  10.  Changes of banded structure width at different positions

    表  1  Q345主要化学成分

    Table  1.   Main chemical composition of Q345 %

    CSiMnPSVNbTiN
    0.140.201.400.0140.0060.0280.0250.020.007
    下载: 导出CSV

    表  2  轧制工艺参数

    Table  2.   Rolling process parameters

    轧制道次厚度/mm道次压下率/%总压下率/%压缩比
    0280.00.00.00.00
    1247.511.611.61.13
    2216.012.722.81.29
    3186.613.633.31.50
    4161.013.742.51.74
    5140.412.850.02.00
    6124.711.255.52.25
    7111.910.360.02.51
    8100.010.664.32.80
    992.17.967.13.00
    下载: 导出CSV
  • [1] Uthaisangsuk V, Muenstermann S, Prahl U, et al. A study of microcrack formation in multiphase steel using representative volume element and damage mechanics[J]. Computational Materals Science, 2011,50(4):1225−1232. doi: 10.1016/j.commatsci.2010.08.007
    [2] Ji Yuan, Min Yunfeng, Li Pengshan, et al. Ribbon structure in steel and its research status[J]. Chinese Metallurgy, 2016,26(4):1−9. (纪元, 闵云峰, 李鹏善, 等. 钢中带状组织及其研究现状[J]. 中国冶金, 2016,26(4):1−9.

    Ji Yuan, Min Yunfeng, Li Pengshan, et al. Ribbon structure in steel and its research status[J]. Chinese Metallurgy, 2016, 26(4): 1-9.
    [3] Verhoeven J D. A review of microsegregation induced banding phenomena in steels[J]. Journal of Materials Engineering and Performance, 2000,9(3):286−296. doi: 10.1361/105994900770345935
    [4] Karimi Y, Nedjad S H, Miyamoto G, et al. Banding effects on the process of grain refinement by cold deformation and recrystallization of acicular C-Mn steel[J]. Materials Science Engineering A, 2017,697(7):1−7.
    [5] Grange R A. Effect of microstructural banding in steel[J]. Metallurgical and Materials Transaction A, 1971,2(2):417−426. doi: 10.1007/BF02663328
    [6] Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel[J]. Acta Materialia, 2004,52(9):2765−2778. doi: 10.1016/j.actamat.2004.02.044
    [7] Krizan D, Spiradek H K, Pichler A. Relationship between microstructure and mechanical properties in Nb-V microalloyed TRIP steel[J]. Materials Science and Technology, 2015,31(6):661−668. doi: 10.1179/1743284714Y.0000000637
    [8] Krauss G. Solidification, segregation, and banding in carbon and alloy steel[J]. Metallurgical and Materials Transaction B, 2003,34(6):781−792. doi: 10.1007/s11663-003-0084-z
    [9] Gao Xiao, Yang Renjie, Li Yingjie, et al. Effect of strip group on mechanical properties of Q345E steel[J]. Large Castings and Forgings, 2016,(2):29−31. (高潇, 杨仁杰, 李英杰, 等. 带状组组对Q345E钢力学性能的影响[J]. 大型铸锻件, 2016,(2):29−31.

    Gao Xiao, Yang Renjie, Li Yingjie, et al. Effect of strip group on mechanical properties of Q345 E steel[J]. Large Castings and Forgings, 2016, 2: 29-31.
    [10] Wang Zhiyi, Le Kexiang. Q345B causes of delamination defects in medium and thick steel plates[J]. Physical and Chemical Testing: Physical Fascicles, 2009,45(10):613−616. (王智轶, 乐可襄. Q345B中厚钢板分层缺陷的形成原因[J]. 理化检验:物理分册, 2009,45(10):613−616.

    Wang Zhiyi, Le Kexiang. Q345 B causes of delamination defects in medium and thick steel plates[J]. Physical and Chemical Testing: Physical Fascicles, 2009, 45(10): 613-616.
    [11] Shi Kewei, Lu Hongxing, Han Yong, et al. Experimental study on the influence of continuous casting cooling strength on the banded structure grade of steel[J]. Continuous Casting, 2015,40(5):42−44. (石可伟, 卢洪星, 韩勇, 等. 连铸冷却强度对钢材带状组织级别影响的试验研究[J]. 连铸, 2015,40(5):42−44.

    Shi Kewei, Lu Hongxing, Han Yong, et al. Experimental study on the influence of continuous casting cooling strength on the banded structure grade of steel[J]. Continuous Casting, 2015, 40(5): 42-44.
    [12] Zhang Yanling, Liu Haiying, Ruan Xiaojiang, et al. Segregation behavior of alloy elements in medium and low carbon gear steels and its effect on banded structure[J]. Journal of Beijing University of Science and Technology, 2009,31(S1):199−206. (张延玲, 刘海英, 阮小江, 等. 中低碳齿轮钢中合金元素的偏析行为及其对带状组织的影响[J]. 北京科技大学学报, 2009,31(S1):199−206.

    Zhang Yanling, Liu Haiying, Ruan Xiaojiang, et al. Segregation behavior of alloy elements in medium and low carbon gear steels and its effect on banded structure[J]. Journal of Beijing University of Science and Technology, 2009, 31(S1): 199-206.
    [13] Ji Yuzhong. Control practice of strip structure of 25CrMo4 gear steel produced by continuous casting and rolling[J]. Shandong Metallurgy, 2022,44(4):54−56. (纪玉忠. 连铸连轧生产25CrMo4齿轮钢带状组织的控制实践[J]. 山东冶金, 2022,44(4):54−56.

    Ji Yuzhong. Control practice of strip structure of 25 CrMo4 gear steel produced by continuous casting and rolling[J]. Shandong Metallurgy, 2022, 44(4): 54-56.
    [14] Wang Jie, Dang Shu, e, Fan Zijing, et al. Tissue homogenization of 17CrNiMo6 gear steel[J]. Metal Heat Treatment, 2022,47(11):126−133. (王杰, 党淑娥, 范子靖, 等. 17CrNiMo6齿轮钢的组织均匀化[J]. 金属热处理, 2022,47(11):126−133.

    Wang Jie, Dang Shue, Fan Zijing, et al. Tissue homogenization of 17 CrNiMo6 gear steel [J]. Metal Heat Treatment, 2022, 47(11): 126-133.
    [15] Wen Hongquan, Wu Cunyou, Zhou Yueming. Study on solute redistribution and macroscopic segregation during solidification process of carbon steel continuous casting billet[J]. Baosteel Technology, 2019,(4):45−49. (温宏权, 吴存有, 周月明. 碳钢连铸坯凝固过程溶质再分配及宏观偏析的研究[J]. 宝钢技术, 2019,(4):45−49.

    Wen Hongquan, Wu Cunyou, Zhou Yueming. Study on solute redistribution and macroscopic segregation during solidification process of carbon steel continuous casting billet [J]. Baosteel Technology , 2019(4): 45-49.
    [16] Chen Jixiong, Liu Weihang, Peng Xiaofeng. Formation reason and process improvement of banded structure in microstructure of Q345B thick steel plate[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2021,57(5):18−20, 26. (陈继雄, 刘卫航, 彭晓枫. Q345B厚钢板显微组织中带状组织的形成原因及工艺改进[J]. 理化检验(物理分册), 2021,57(5):18−20, 26.

    Chen Jixiong, Liu Weihang, Peng Xiaofeng. Formation reason and process improvement of banded structure in microstructure of Q345 B thick steel plate[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2021, 57(5): 18-20, 26.
    [17] Huo Xiangdong, Hou Liang, Li Liejun, et al. Recrystallization law of titanium microalloyed high-strength steel[J]. Journal of Materials Heat Treatment, 2017,38(4):119−125. (霍向东, 侯亮, 李烈军, 等. 钛微合金化高强钢的再结晶规律[J]. 材料热处理学报, 2017,38(4):119−125.

    Huo Xiangdong, Hou Liang, Li Liejun, et al. Recrystallization law of titanium microalloyed high-strength steel[J]. Journal of Materials Heat Treatment, 2017, 38(4): 119-125.
    [18] Xie Xinghua, Yao Zekun, Ning Yongquan, et al. Dynamic recrystallization and grain refinement of FGH4096 alloy[J]. Journal of Aeronautical Materials, 2011,31(1):20−24. (谢兴华, 姚泽坤, 宁永权, 等. FGH4096合金的动态再结晶与晶粒细化研究[J]. 航空材料学报, 2011,31(1):20−24. doi: 10.3969/j.issn.1005-5053.2011.1.004

    Xie Xinghua, Yao Zekun, Ning Yongquan, et al. Dynamic recrystallization and grain refinement of FGH4096 alloy[J]. Journal of Aeronautical Materials, 2011, 31(1): 20-24. doi: 10.3969/j.issn.1005-5053.2011.1.004
    [19] Ma Cainü, Gao Xueyun, Hu Zhiyu, et al. Effect of rolling deformation on grain refinement of 0.05C-2.8Mn-4.2Ni-2Al-1.2Mo-1.9Cu of F-M duplex steel[J]. Special Steel, 2022,43(3):91−94. (马才女, 高雪云, 呼陟宇, 等. 轧制变形对F-M双相钢0.05C-2.8Mn-4.2Ni-2Al-1.2Mo-1.9Cu晶粒细化的影响[J]. 特殊钢, 2022,43(3):91−94. doi: 10.3969/j.issn.1003-8620.2022.03.020

    Ma Cainv, Gao Xueyun, Hu Zhiyu, et al. Effect of rolling deformation on grain refinement of 0.05 C-2.8 Mn-4.2 Ni-2 Al-1.2 Mo-1.9 Cu of F-M duplex steel[J]. Special Steel, 2022, 43(3): 91-94. doi: 10.3969/j.issn.1003-8620.2022.03.020
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回