Volume 42 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Zhang Zhenquan, Zhao Beibei, Li Lanjie, Dong Zihui, Bai Ruiguo, Wang Haixu. Study on selective separation of vanadium, titanium and tungsten from spent SCR denitration catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 24-31. doi: 10.7513/j.issn.1004-7638.2021.01.004
Citation: Zhang Zhenquan, Zhao Beibei, Li Lanjie, Dong Zihui, Bai Ruiguo, Wang Haixu. Study on selective separation of vanadium, titanium and tungsten from spent SCR denitration catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 24-31. doi: 10.7513/j.issn.1004-7638.2021.01.004

Study on selective separation of vanadium, titanium and tungsten from spent SCR denitration catalyst

doi: 10.7513/j.issn.1004-7638.2021.01.004
  • Received Date: 2020-12-07
  • Publish Date: 2021-02-10
  • Titanium was selectively separated from waste SCR catalyst by NaOH leaching, HCl leaching and sodium carbonate roasting followed by water leaching, respectively. The results show that titanium can be separated from vanadium and tungsten by sodium carbonate roasting and water leaching of the catalyst. The optimum process conditions are as follows: roasting temperature 850 ℃, roasting time 3 h, mass ratio of sodium carbonate to waste catalyst 1.3, leaching temperature 95 ℃, leaching time 1 h, stirring speed 500 r/min. The leaching rates of V, As and W are 52.26%, 98.24% and 99.9%, respectively. High efficient titanium extraction can be achieved by leaching sodium roasting slag of the spent SCR catalyst with sulfuric acid. The optimum conditions are as follows: 40% sulfuric acid, liquid-solid ratio 4∶1, leaching temperature 90 ℃, leaching time 3 h, stirring speed 500 r/min. The leaching rate of titanium is 93.4%. Metatitanic acid was prepared by hydrolysis. The hydrolysis rate of titanium is 94.05% and the purity of metatitanic acid is 94.07%.
  • loading
  • [1]
    Zhang Liping, Lv Lingling, Dong Li, et al. Research progress on resources recovery and utilization of waste-SCR-catalyst[J]. Yunnan Chemical Technology, 2019,46(8):77−83. (张立萍, 吕灵灵, 董莉, 等. 废SCR催化剂资源回收利用研究进展[J]. 云南化工, 2019,46(8):77−83. doi: 10.3969/j.issn.1004-275X.2019.08.030
    [2]
    Zeng Rui, Hao Yongli. Analysis on project construction pattern of abandoned SCR catalyzer recovery and utilization[J]. China Environmental Protection Industry, 2014,(9):41−45. (曾瑞, 郝永利. 废弃SCR催化剂回收利用项目建设格局的分析[J]. 中国环保产业, 2014,(9):41−45. doi: 10.3969/j.issn.1006-5377.2014.09.008
    [3]
    LEE Jungbin, EOM Yongseok, KIM Junhan, et al. Regeneration of waste SCR catalyst by air lift loop reactor[J]. Journal of Central South University, 2013,20(5):1314−1318. doi: 10.1007/s11771-013-1617-5
    [4]
    Zeng Rui. Reclamation and recycling of SCR waste catalyzer[J]. China Environmental Protection Industry, 2013,(2):39−42. (曾瑞. 浅谈SCR废催化剂的回收再利用[J]. 中国环保产业, 2013,(2):39−42. doi: 10.3969/j.issn.1006-5377.2013.02.014
    [5]
    Zhang Bingbing, Yu Dandan, Wang Fang, et al. Technology of vanadium recovery from deactivated denitration catalyst[J]. Henan Science, 2016,34(6):866. (张兵兵, 于丹丹, 王芳, 等. 废脱硝催化剂中五氧化二钒回收工艺研究[J]. 河南科学, 2016,34(6):866.
    [6]
    Zheng Yilin, Dai Shijin, Zhao Youcai, et al. Selective leaching of vanadium and tungsten from spent SCR catalyst using organic acids[J]. Environmental Protection of Chemical Industry, 2020,40(2):162−168. (郑怡琳, 戴世金, 赵由才, 等. 废SCR催化剂中钒和钨的有机酸浸出[J]. 化工环保, 2020,40(2):162−168. doi: 10.3969/j.issn.1006-1878.2020.02.009
    [7]
    Zeng Xiaoyi, Mei Qizheng, Sun Zhengyuan. High efficient recycling of TiO2 from waste SCR catalyst by Na2CO3 roasting and water leaching[J]. Nonferrous Metals(Extractive Metallurgy), 2019,(12):23−28. (曾小义, 梅其政, 孙正圆. 废SCR催化剂碳酸钠焙烧浸出回收二氧化钛[J]. 有色金属(冶炼部分), 2019,(12):23−28.
    [8]
    Liu Zilin, Wang Baodong, Ma Ruixin, et al. Study on mechanism of recovery of tungsten and vanadium from waste SCR catalysts by soda roasting[J]. Inorganic Chemicals Industry, 2016,48(7):63−67. (刘子林, 王宝冬, 马瑞新, 等. 废SCR催化剂钠化焙烧回收钨和钒的机理探究[J]. 无机盐工业, 2016,48(7):63−67.
    [9]
    Zhou Kai, Lu Bin, Wang Sheng, et al. Research on recovery process of Ti, V and W in waste SCR denitration catalyst[J]. Electric Power Technology and Environmental Protection, 2019,35(4):8−13. (周凯, 陆斌, 王圣, 等. 废弃SCR脱硝催化剂中Ti、V、W元素回收工艺研究[J]. 电力科技与环保, 2019,35(4):8−13. doi: 10.3969/j.issn.1674-8069.2019.04.003
    [10]
    (李小文. 废SCR催化剂高压碱浸回收钨钒的工艺研究[D]. 赣州: 江西理工大学, 2019.)

    Li Xiaowen. Recovery of tungsten and vanadium from waste SCR catalyst by high pressure alkaline leaching[D]. Ganzhou: Jiangxi University of Science and Technology, 2019.
    [11]
    Chen Yang, Jin Ke, Chen Jiayu, et al. Leaching of V and W from spent SCR catalyst-effect of agitation on leaching rates[J]. Journal of Functional Materials, 2020,51(3):3001−3006. (陈洋, 金科, 陈嘉宇, 等. 废脱硝催化剂钒、钨的浸出-搅拌对浸出率的影响[J]. 功能材料, 2020,51(3):3001−3006.
    [12]
    Tang Dingling, Song Hao, Liu Dingding, et al. Study on leaching kinetics of extracting vanadium and tungsten by sodium hydroxide from spent SCR catalyst[J]. Chinese Journal of Environmental Engineering, 2017,11(2):1093−1100. (唐丁玲, 宋浩, 刘丁丁, 等. 废弃脱硝催化剂碱浸提取钒和钨的浸出动力学研究[J]. 环境工程学报, 2017,11(2):1093−1100. doi: 10.12030/j.cjee.201509258
    [13]
    Zhang Chen, Liu Jianhua, Yang Xiaobo, et al. Ultrasound assisted enhancement in vanadium and tungsten leaching from waste SCR catalyst[J]. Functional Materials, 2015,46(20):20063−20067. (张琛, 刘建华, 杨晓博, 等. 超声强化废SCR催化剂浸出V和W的研究[J]. 功能材料, 2015,46(20):20063−20067. doi: 10.3969/j.issn.1001-9731.2015.20.014
    [14]
    Li Wenjun, Xu Tengfei, Liu Xuesong, et al. Effect comparison of microwave heating and muffle heating on treatment of spent SCR catalyst[J]. Environmental Protection of Chemical Industry, 2017,37(5):572−575. (李文军, 许腾飞, 刘雪松, 等. 微波焙烧法与马弗炉焙烧法处理废脱硝催化剂的效果比较[J]. 化工环保, 2017,37(5):572−575. doi: 10.3969/j.issn.1006-1878.2017.05.015
    [15]
    Chen Guangyu, Kang Jialong, Liu Junjie, et al. Study on direct alloying of waste SCR catalysts[J]. Iron Steel Vanadium Titanium, 2018,39(6):99−102. (陈广玉, 康嘉龙, 刘俊杰, 等. 废弃脱硝催化剂直接合金化研究[J]. 钢铁钒钛, 2018,39(6):99−102. doi: 10.7513/j.issn.1004-7638.2018.06.016
    [16]
    Piao Rongxun, Ma Lan, Yang Shaoli, et al. Experimental study on preparation of Cr-containing Ti-Al based alloys by aluminothermic reduction-remelting of waste SCR Ti-based denitration catalyst[J]. Iron Steel Vanadium Titanium, 2019,40(2):79−86. (朴荣勋, 马兰, 杨绍利, 等. 废SCR钛基脱硝催化剂铝热还原重熔制备含铬钛铝基合金的试验研究[J]. 钢铁钒钛, 2019,40(2):79−86. doi: 10.7513/j.issn.1004-7638.2019.02.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(9)

    Article Metrics

    Article views (356) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return