Volume 42 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Zuo Dawen, Gong Lei, Wei Jie, Deng Bo, Shao Xing, Yang Shishan. Experimental studies on reduction desulfurization of FGD gypsum from iron ore sintering process using CO/H2[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 83-92. doi: 10.7513/j.issn.1004-7638.2021.01.014
Citation: Zuo Dawen, Gong Lei, Wei Jie, Deng Bo, Shao Xing, Yang Shishan. Experimental studies on reduction desulfurization of FGD gypsum from iron ore sintering process using CO/H2[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 83-92. doi: 10.7513/j.issn.1004-7638.2021.01.014

Experimental studies on reduction desulfurization of FGD gypsum from iron ore sintering process using CO/H2

doi: 10.7513/j.issn.1004-7638.2021.01.014
  • Received Date: 2020-11-25
  • Publish Date: 2021-02-10
  • The thermodynamic equilibrium of CO/H2 reduction of CaSO4 was calculated through software FactSage 7.3. The optimum theoretical conditions for generation of CaO and SO2 by CO/H2 reduction of CaSO4 were obtained at more than 1100 ℃ of reaction temperature and mole ratio of n(CO)∶n(CaSO4)=1 or n(H2)∶n(CaSO4)=1. The reduction agent with a too high or too low mole ratio (n(CO)∶n(CaSO4) or n(H2)∶n(CaSO4)) is not beneficial to the reduction desulfurization of CaSO4. A higher temperature is favorable for the CO/H2 reduction desulfurization of CaSO4. According to the thermodynamic calculation results, experimental studies on reduction desulfurization of FGD gypsum from iron ore sintering process were carried out using CO/H2+N2 mixture gas in a furnace, and the influences of CO/H2 concentration, reaction temperature, reaction time and gas flow rate on the reduction desulfurization of FGD gypsum by CO/H2 were studied. The results show that the beneficial conditions for CO reduction desulfurization of FGD gypsum are CO concentration of 5%, temperature of 1050 ℃ for 30 min and gas flow rate of 5 L/min. The beneficial conditions for H2 reduction desulfurization are H2 concentration of 8%, temperature of 1050 ℃ for 30 min and gas flow rate of 5 L/min. The efficiency of reduction desulfurization by CO is better than that by H2. During the reduction process, FGD gypsum sinters above 900 ℃ and it makes a notable impact on the reduction desulfurization of the FGD gypsum.
  • loading
  • [1]
    Meng Lingjia, Ji Zhonghai, Chen Jin. Advance of the thermal decomposition of industrial by-product gypsum[J]. Chemical Industry and Engineering Progress, 2017,36(2):626−633. (孟令佳, 吉忠海, 陈津. 工业副产石膏热分解脱硫的研究进展[J]. 化工进展, 2017,36(2):626−633.
    [2]
    Han Lingcui, Wang Yongchang. Development of chemical gypsum industry depends on the integration of energy saving and emission reduction with comprehensive utilization[J]. Phosphate & Compound Fertilizer, 2010,25(6):11−13, 21. (韩灵翠, 王永昌. 节能减排与综合利用并重是化学石膏产业发展方向[J]. 磷肥与复肥, 2010,25(6):11−13, 21. doi: 10.3969/j.issn.1007-6220.2010.06.003
    [3]
    Hu Zhenyu, Wang Jian, Zhang Xian, et al. Comprehensive utilization of phosphgypsum[J]. China Mine Engineering, 2004,33(4):41−44. (胡振玉, 王健, 张先, 等. 磷石膏的综合利用[J]. 中国矿山工程, 2004,33(4):41−44. doi: 10.3969/j.issn.1672-609X.2004.04.012
    [4]
    Richard R. West and Willard J. Sutton Thermography of gypsum[J]. Journal of the American Ceramic Society, 1954,37(5):221−224. doi: 10.1111/j.1151-2916.1954.tb14027.x
    [5]
    Miao Zhu, Yang Hairui, Wu Yuxin, et al. Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds[J]. Industrial & Engineering Chemistry Research, 2012,51(15):5419−5423.
    [6]
    Xiao Haiping, Zhou Junhu, Cao Xinyu, et al. Experiments and model of the decomposition of CaSO4 under CO atmosphere[J]. Journal of Fuel Chemistry and Technology, 2005,33(2):150−154. (肖海平, 周俊虎, 曹欣玉, 等. CaSO4在CO气氛下的平行竞争反应试验与模型研究[J]. 燃料化学学报, 2005,33(2):150−154. doi: 10.3969/j.issn.0253-2409.2005.02.005
    [7]
    Su Hang, Zuo Haibin, Zhao Jun. Desulphurization of gypsum at high temperature[J]. Inorganic Chemicals Industry, 2019,51(7):68−73. (苏航, 左海滨, 赵骏. 石膏在高温下的分解脱硫研究[J]. 无机盐工业, 2019,51(7):68−73. doi: 10.11962/1006-4990.2018-0486
    [8]
    Zheng Shaocong, Ning Ping, Wang Fan, et al. Study on preparation of sulfur dioxide and lime by thermal decomposition of phosphogypsum[J]. Inorganic Chemicals Industry, 2013,45(9):45−47. (郑绍聪, 宁平, 汪帆, 等. 磷石膏热分解制备二氧化硫和氧化钙研究[J]. 无机盐工业, 2013,45(9):45−47. doi: 10.3969/j.issn.1006-4990.2013.09.015
    [9]
    Han Xiangyu, Chen Haokan, Li Baoqing. Thermogravimetric study on the reductive decomposition of calcium sulfate with pure H2 at high temperature[J]. Coal Conversion, 2000,23(2):72−75. (韩翔宇, 陈皓侃, 李保庆. CaSO4氢气下还原分解的热重研究[J]. 煤炭转化, 2000,23(2):72−75. doi: 10.3969/j.issn.1004-4248.2000.02.014
    [10]
    Chen Sheng, Liu Shaowen. Thermodynamic study on reductive decomposition of calcium sulfate with hydrogen[J]. Journal of Chemical Industry & Engineering, 2012,33(5):7−11. (陈升, 刘少文. 氢气还原分解硫酸钙的热力学研究[J]. 化学工业与工程技术, 2012,33(5):7−11.
    [11]
    Shao Xing, Gong Lei, Cao Yuexi, et al. Study on properties of FGD gypsum from iron sintering process[J]. Zhejiang Metallurgy, 2018,(1):28−32. (邵兴, 巩磊, 曹悦曦, 等. 烧结废气脱硫石膏性能探究[J]. 浙江冶金, 2018,(1):28−32.
    [12]
    Deng Bo, Gong Lei. Preliminary experimental study on decomposition and reduction of FGD gypsum from iron sintering process[J]. Zhejiang Metallurgy, 2019,(1):9−13. (邓波, 巩磊. 烧结废气脱硫石膏分解与还原试验初探[J]. 浙江冶金, 2019,(1):9−13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (275) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return