Volume 42 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Li Yuanyuan, Zhen Weijing, Li Yongliang, Yan Zhijie. Effect of Ca-Mg compound modifier on microstructure and plasicity in cold-rolled high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 119-125. doi: 10.7513/j.issn.1004-7638.2021.01.019
Citation: Li Yuanyuan, Zhen Weijing, Li Yongliang, Yan Zhijie. Effect of Ca-Mg compound modifier on microstructure and plasicity in cold-rolled high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 119-125. doi: 10.7513/j.issn.1004-7638.2021.01.019

Effect of Ca-Mg compound modifier on microstructure and plasicity in cold-rolled high strength steel

doi: 10.7513/j.issn.1004-7638.2021.01.019
  • Received Date: 2020-04-08
  • Publish Date: 2021-02-10
  • The influence mechanism of Ca-Mg compound modifier on TiN precipitation in ingot of producing ultra-high cold-rolled strength steel were studied by means of optical microscope (OM), transmission electron microscope (TEM) and electron backscatter diffraction (EBSD), etc. Andmicrostructure hereditary effect and plastic improvement at various process steps were compared systematically. The result showed that the size of TiN reduced with the addition of modifier, whereas its density increased with a relatively uniform distribution. Addition of modifier decreased the volume fraction of ferrite along grain boundary for both ingot and hot rolled strip, and resulted in fine microstructure in the as-cold rolled sheet. Comparing modifier-free sample, the yield strength, yield ratio dramatically increased and the bending properties and hole expanding ratio improved for the modifier-bearing sheet. The nucleation mechanism of TiN was changed by the addition of Ca-Mg compound modifier. The dispersed TiN particles could effectively refine the casting microstructure, and the microstructure for hot-rolled or cold-rolled were all refined effectively by hereditary effect which could significantly improve the mechanical properties and formability of steel.
  • loading
  • [1]
    Zhao Zhengzhi, Niu Feng, Tang Di,et al. Microstructure and properties of ultra-high strength cold-rolled dual phase steel[J]. Journal of University of Science and Technology Beijing, 2010,32(10):1287−1291. (赵征志, 牛枫, 唐荻, 等. 超高强度冷轧双相钢组织与性能[J]. 北京科技大学学报, 2010,32(10):1287−1291.
    [2]
    González R, García J O, Barbés M A, et al. Ultrafine grained HSLA steels for cold forming[J]. Journal of Iron & Steel Research, 2010,(10):53−59.
    [3]
    Gao B, Chen X, Pan Z, et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 2019,54(19):66−72.
    [4]
    Dai Qifeng, Song Renbo, Guan Xiaoxia. Microstructure and properties of ultra-high strength ferrite-matensite dual phase steel tested under dynamic tensile conditions[J]. Materials Engineering, 2013,(4):6−11. (代启锋, 宋仁伯, 关小霞. 超高强铁素体-马氏体双相钢在动态拉伸变形条件下组织和性能研究[J]. 材料工程, 2013,(4):6−11. doi: 10.3969/j.issn.1001-4381.2013.04.002
    [5]
    Narayanasamy R, Parthasarathi N L, Narayanan C S. Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions[J]. Materials & Design, 2009,30(4):1310−1324.
    [6]
    Parilák L, Doják J. Influence of microstructure on micromechanisms of failure in HSLA steels[J]. International Journal of Pressure Vessels and Piping, 1993,55(2):353−360.
    [7]
    Wen B, Song B, Pan N, et al. Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J]. Ironmaking & Steelmaking, 2013,38(8):577−583.
    [8]
    Abbasi S M, Morakabati M, Mahdavi R, et al. Effect of microalloying additions on the hot ductility of cast FeNi36[J]. Journal of Alloys and Compounds, 2015,639:602−610. doi: 10.1016/j.jallcom.2015.03.167
    [9]
    Jung J, Park J, Kim J, et al. Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyed steel[J]. Materials Science and Engineering: A, 2011,528(16−17):5529−5535. doi: 10.1016/j.msea.2011.03.086
    [10]
    Wang Z, Sun X, Yang Z, et al. Carbide precipitation in austenite of a Ti–Mo-containing low-carbon steel during stress relaxation[J]. Materials Science and Engineering: A, 2013,573:84−91. doi: 10.1016/j.msea.2013.02.056
    [11]
    Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel: Competition between large grains and large particles[J]. Materials Science and Engineering: A, 2013,561:126−135. doi: 10.1016/j.msea.2012.11.019
    [12]
    (李永亮. 700 MPa级高强度汽车大梁钢成分设计与组织控制研究[D]. 北京科技大学, 2017.)

    Li Yongliang. Study on composition design and microstructure control about 700 MPa grade high strength beam steel for vehicles[D]. Beijing: University of Science and Technology Beijing, 2017.
    [13]
    He B, Li J, Shi C B, et al. Effect of Mg addition on carbides in H13 steel during electroslag remelting process[J]. Metallurgical Research and Technology, 2018,115(5):256−261.
    [14]
    Lu Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93−98. (吕勇, 彭军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93−98.
    [15]
    Georgy V, Hideaki S. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe-10%Ni alloy[J]. ISIJ International, 2001,41(7):748−756. doi: 10.2355/isijinternational.41.748
    [16]
    (闫志杰, 王睿, 康燕, 等. 一种用于细化钢铁中碳化物的变质剂, 中国: CN107686872B[J].2019-12-10.)

    Yan Zhijie, Wang Rui, Kang Yan, et al. A modifier using for refining the carbide in steel, China: CN107686872B[J]. 2019-12-10.
    [17]
    Ge Yunzong, Yan Huicheng, Wang Jianjun, et al. Formation and control of CaS inclusion in gear steel 20CrMnTiH1[J]. Steelmaking, 2013,29(3):23−27. (葛允宗, 颜慧成, 王建军, 等. 20CrMnTiH1齿轮钢中CaS夹杂的形成与控制[J]. 炼钢, 2013,29(3):23−27.
    [18]
    Hiroki O, Hideaki S. Effects of N, C and Si contents and MgO on dispersion of TiN particles in Fe-1.5%Mn-0.05(0.15)%C alloy[J]. ISIJ International, 2007,47(2):197−206. doi: 10.2355/isijinternational.47.197
    [19]
    Kim H S, Chang C, Lee H. Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels[J]. Scripta Materialia, 2005,53(11):1253−1258. doi: 10.1016/j.scriptamat.2005.08.001
    [20]
    Kimiaki S, Hideadki S. Grain-growth-inhibiting effects of primary inclusion particles of ZrO2 and MgO in Fe-10 mass Pct Ni alloy[J]. Metallurgical and Materials Transactions A, 2000,31(A):1213−1223.
    [21]
    Zhao Mingchun, Shan Yiyin, Xiao Furen, et al. Study on formation and strength & toughness behavior of acicular ferrite in p pipeline steel[J]. Materials Science & Technology, 2001,9(4):356−358. (赵明纯, 单以银, 肖福仁, 等. 管线钢中针状铁素体的形成及其强韧性的分析[J]. 材料科学与工艺, 2001,9(4):356−358. doi: 10.3969/j.issn.1005-0299.2001.04.005
    [22]
    Zheng Haoyong, Wang Meng, Wang Xiuxing, et al. Analysis of heterogeneous nucleation on rough surfaces based on Wenzel model[J]. Acta Phys. Sin., 2011,60(6):664021−664025. (郑浩勇, 王猛, 王修星, 等. 基于Wenzel模型的粗糙界面异质形核分析[J]. 物理学报, 2011,60(6):664021−664025.
    [23]
    (孙杰. 铝异质形核机理研究[D]. 上海: 上海大学, 2018.)

    Sun Jie. Heterogeneous nucleation mechanism of aluminum on substrates[D]. Shanghai: Shanghai University, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (157) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return