Volume 42 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Li Yongliang, Kuang Shuang, Jia Lihui, Wang Yunhui, Chen Tong, Ju Weifeng, Zhang Yuwen, Zheng Yaxu. Research on cracking mechanism of girth and weld straightening of grade 800 MPa automobile torsion beam steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 184-190. doi: 10.7513/j.issn.1004-7638.2021.01.030
Citation: Li Yongliang, Kuang Shuang, Jia Lihui, Wang Yunhui, Chen Tong, Ju Weifeng, Zhang Yuwen, Zheng Yaxu. Research on cracking mechanism of girth and weld straightening of grade 800 MPa automobile torsion beam steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 184-190. doi: 10.7513/j.issn.1004-7638.2021.01.030

Research on cracking mechanism of girth and weld straightening of grade 800 MPa automobile torsion beam steel

doi: 10.7513/j.issn.1004-7638.2021.01.030
  • Received Date: 2020-08-18
  • Publish Date: 2021-02-10
  • The cracking mechanism of grade 800 MPa steel for automobile torsion beam during girth and weld straightening were studied by OM, SEM, TEM and EBSD. Thermos-Calc thermodynamic software and J Mat Pro software were used to calculate equilibrium precipitated phase in steel and TTT curves. The microstructure and nano precipitates of experimental steels with different compositions were observed. The results show that the main reasons for cracking of experimental steel during girth and weld straightening are as follows: the addition of Cr, Mo and V elements in the 3# steel makes the TTT curve of the steel shift to the right, improving the stability of austenite and generating a large number of lath martensite and lath ferrite with high density dislocation during cooling after rolling. However, the amount of equiaxed ferrite is less and the grain size is uneven, so the tensile strength is higher. High density dislocation in lath martensite and lath ferrite results in the decrease of plasticity and toughness, and then causing crack in girth and weld during straightening.
  • loading
  • [1]
    Zhang Xiaoming Yin Shubiao, Yang Chunlei, et al. Reasons and improvement of K510L steel automobile crossbeam bending crack[J]. Hot Working Technology, 2017,46(5):257−262. (张小明, 阴树标, 杨春雷, 等. 汽车大梁K510L钢折弯裂纹成因及改进[J]. 热加工工艺, 2017,46(5):257−262.
    [2]
    Liu Sheniu, Cheng Yonggu, Duan Yun. Analysis of 510L automobile Frames machining crack[J]. Henan Metallougy, 2010,18(6):18−23. (刘社牛, 程永固, 段云. 汽车大梁钢510L加工开裂的原因分析[J]. 河南冶金, 2010,18(6):18−23. doi: 10.3969/j.issn.1006-3129.2010.06.006
    [3]
    Narayanasamy R, Parthasarathi N L, Narayanan C S. Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions[J]. Materials & Design, 2009,30(4):1310−1324.
    [4]
    Xiao Guangyao, Song Yingjin, Tian Yaqiang, et al. Experimental study on the behavior of compressive strength and peak strain of concrete under high strain rates[J]. Journal of Hebei United University (Natural Science Edition), 2012,34(3):71−74. (肖广耀, 宋进英, 田亚强,等. 硫化物夹杂及成分偏析对610L钢冷弯开裂的影响[J]. 河北联合大学学报(自然科学版), 2012,34(3):71−74.
    [5]
    Zhao Peilin, Sun Xinjun, Yong Qilong, et al. Crack analysis of super high strength steel plate during cold stamping process[J]. Heat Treatment of Metals, 2012,37(7):122−126. (赵培林, 孙新军, 雍岐龙, 等. 超高强度热轧钢板冷冲压开裂原因及分析[J]. 金属热处理, 2012,37(7):122−126.
    [6]
    Xu Liling. Microscopic analysis on cold bend fracture of BM510L beam steel plate[J]. Physics Examination and Testing, 2005,23(5):53−55. (徐礼玲. BM510L汽车大梁钢板冷弯开裂的显微分析[J]. 物理测试, 2005,23(5):53−55. doi: 10.3969/j.issn.1001-0777.2005.05.019
    [7]
    Song Zhuofei, Feng Yunli, Feng Runming, et al. Study on reason for low impact toughness and cold bending crack of 610L[J]. Hot Working Technology, 2014,43(2):221−222. (宋卓斐, 冯运莉, 冯润明, 等. 610L汽车大梁钢冲击韧性低及冷弯开裂原因研究[J]. 热加工工艺, 2014,43(2):221−222.
    [8]
    Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy[J]. Iron Steel Vanadium Titanium, 2020,41(3):59−63. (孙凤, 尹晓丽, 赵达. 钒微合金化汽车钛合金的轧制工艺优化[J]. 钢铁钒钛, 2020,41(3):59−63. doi: 10.7513/j.issn.1004-7638.2020.03.009
    [9]
    Hang Zidi, Feng Yunli, Cui Yan, et al. Mathematical modeling of the recrystallization kinetics of high Ti-microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020,41(1):141−146. (杭子迪, 冯运莉, 崔岩, 等. 高Ti微合金高强钢静态再结晶动力学模型[J]. 钢铁钒钛, 2020,41(1):141−146.
    [10]
    Gao B, Chen X, Pan Z, et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 2019,54(19):66−72.
    [11]
    Yang Yilei, Hui Yajun, Ju Xinhua, et al. Causes and control measures of stamping cracking of 700 MPa grade high strength beam steel[J]. China Metallurgy, 2019,29(6):77−80. (杨一雷, 惠亚军, 鞠新华, 等. 700MPa级高强度大梁钢冲压开裂原因与控制措施[J]. 中国冶金, 2019,29(6):77−80.
    [12]
    HuoXiangdong, Mao Xinping, Dong Feng. Effect of coiling temperature on the mechanical properties of Ti-microalloyed high strength steel[J]. Journal of University of Science and Technology Beijing, 2013,35(11):1472−1477. (霍向东, 毛新平, 董锋. 卷取温度对Ti微合金化高强钢力学性能的影响机理[J]. 北京科技大学学报, 2013,35(11):1472−1477.
    [13]
    Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel: Competition between large grains and large particles[J]. Materials Science and Engineering: A, 2013,561:126−135. doi: 10.1016/j.msea.2012.11.019
    [14]
    Bu F Z, Wang X M, Yang S W, et al. Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti-Nb and Ti-Nb-Mo microalloyed steels[J]. Materials Science & Engineering: A, 2014,(620):22−29.
    [15]
    Xu Y, Zhang W, Sun M, et al. The blocking effect of interphase precipitation on dislocations' movement in Ti-bearing micro-alloyed steel[J]. Materials Letters, 2015,(139):177−181.
    [16]
    Lv Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93−98. (吕勇, 彭军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93−98.
    [17]
    Shu Wei, Wang Xuemin, Li Shurui, et al. Influence of second-phase particles containing Ti on microstructure and properties of weld-heat-affected-zone of a microalloy steel[J]. Acta Metallurgica Sinica, 2010,46(8):997−1003. (舒玮, 王学敏, 李书瑞, 等. 含复合第二相粒子对微合金钢焊接热影响区组织和性能的影响[J]. 金属学报, 2010,46(8):997−1003.
    [18]
    Jung J, Park J, Kim J, et al. Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyedsteel[J]. Materials Science and Engineering: A, 2011,528(16-17):5529−5535. doi: 10.1016/j.msea.2011.03.086
    [19]
    Wang Z, Sun X, Yang Z, et al. Carbide precipitation in austenite of a Ti–Mo-containing low-carbon steel during stress relaxation[J]. Materials Science and Engineering: A, 2013,573:84−91. doi: 10.1016/j.msea.2013.02.056
    [20]
    Li Liming, Feng Yunli, Yang Lina. Thermodynamic calculation of Ti-containing second phase in Ti-microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2019,40(1):118−122. (李立铭, 冯运莉, 杨丽娜. 钛微合金化高强钢含Ti第二相的热力学计算[J]. 钢铁钒钛, 2019,40(1):118−122. doi: 10.7513/j.issn.1004-7638.2019.01.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (162) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return