Volume 42 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Tian Congxue. Hydrothermal synthesis of high purity TiO2 from metatitanic acid via short sulfate process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 25-30. doi: 10.7513/j.issn.1004-7638.2021.03.004
Citation: Tian Congxue. Hydrothermal synthesis of high purity TiO2 from metatitanic acid via short sulfate process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 25-30. doi: 10.7513/j.issn.1004-7638.2021.03.004

Hydrothermal synthesis of high purity TiO2 from metatitanic acid via short sulfate process

doi: 10.7513/j.issn.1004-7638.2021.03.004
  • Received Date: 2020-04-04
  • Publish Date: 2021-06-10
  • High purity titanium dioxide was prepared through the hydrothermal synthesis route, using metatitanic acid as precursor which was hydrolyzed from low concentration industrial titanyl sulfate solution via short sulfate process. The effects of slurry mass concentration, hydrothermal temperature and hydrothermal time on the structure and purity of the products were investigated. The samples were characterized by XRD, particle size distribution, BET analysis, SEM and TiO2 content determination. The hydrothermal conditions, e.g. slurry mass concentration, hydrothermal temperature and hydrothermal time influence the dissolution, nucleation, crystal growth, polymerization and agglomeration of the precipitates, and the structure, particle size distribution and specific surface area of the hydrothermal metatitanic acid are also affected, which leads to the content variation of the adsorbed impurities and ultimately influences the structure and purity of TiO2. The optimized hydrothermal conditions are the slurry concentration of 160 g/L, hydrothermal temperature of 140 ℃ for 36 h, with the high purity TiO2 (99.99%) obtained.
  • loading
  • [1]
    Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007,107:2891−2959. doi: 10.1021/cr0500535
    [2]
    Liu Y, Tian L H, Tan X Y, et al. Synthesis, properties, and applications of black titanium dioxide nanomaterials[J]. Science Bulletin, 2017,62:431−441. doi: 10.1016/j.scib.2017.01.034
    [3]
    Bai Y, Mora-Sero I, De Angelis F, et al. Titanium dioxide nanomaterials for photovoltaic applications[J]. Chemical Reviews, 2014,114:10095−10130. doi: 10.1021/cr400606n
    [4]
    Bai J, Zhou B X. Titanium dioxide nanomaterials for sensor applications[J]. Chemical Reviews, 2014,114:10131−10176. doi: 10.1021/cr400625j
    [5]
    Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014,114:9987−10043. doi: 10.1021/cr500008u
    [6]
    Li W, Elzatahry A, Aldhayan D, et al. Core-shell structured titanium dioxide nanomaterials for solar energy utilization[J]. Chemical Society Reviews, 2018,47:8203−8237. doi: 10.1039/C8CS00443A
    [7]
    Katir N, Marcotte N, Michlewska S, et al. Dendrimer for templating the growth of porous catechol-coordinated titanium dioxide frameworks: toward hemocompatible nanomaterials[J]. ACS Applied Nano Materials, 2019,2:2979−2990. doi: 10.1021/acsanm.9b00382
    [8]
    Wang M X, Gao Q, Duan H, et al. Scalable synthesis of high-purity TiO2 whiskers via ion exchange method enables versatile applications[J]. RSC Advances, 2019,9:23735−23743. doi: 10.1039/C9RA03870A
    [9]
    Li G S, Li L P, Boerio-Goates J, et al. High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry[J]. Journal of the American Chemical Society, 2005,127:8659−8666. doi: 10.1021/ja050517g
    [10]
    O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991,353:737−740. doi: 10.1038/353737a0
    [11]
    Ma T L, Akiyama M, Abe E, et al. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode[J]. Nano Letters, 2005,5:2543−2547. doi: 10.1021/nl051885l
    [12]
    Wang C C, Ying J Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals[J]. Chemistry of Materials, 1999,11:3113−3120. doi: 10.1021/cm990180f
    [13]
    Zhu X F, Zheng S L, Zhang Y, et al. Potentially more ecofriendly chemical pathway for production of high-purity TiO2 from titanium slag[J]. ACS Sustainable Chemistry & Engineering, 2019,7:4821−4830.
    [14]
    Barringer E A, Bowen H K. High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties[J]. Langmuir, 1985,1:414−420. doi: 10.1021/la00064a005
    [15]
    Akhtar M K, Yun X O, Pratsinis S E. Vapor synthesis of titania powder by titanium tetrachloride oxidation[J]. AIChE Journal, 1991,37:1561−1570. doi: 10.1002/aic.690371013
    [16]
    Shuang Y, Hou Y, Zhang B, et al. Impurity-free synthesis of cube-like single-crystal anatase TiO2 for high performance dye-sensitized solar cell[J]. Industrial & Engineering Chemistry Research, 2013,52:4098−4102.
    [17]
    Li Z H, Wang Z C, Li G. Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method[J]. Powder Technology, 2016,287:256−263. doi: 10.1016/j.powtec.2015.09.008
    [18]
    Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2004,14:3370−3377. doi: 10.1039/b406378c
    [19]
    Yu J G, Wang G H, Cheng B, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders[J]. Applied Catalysis B-Environmental, 2007,69:171−180. doi: 10.1016/j.apcatb.2006.06.022
    [20]
    Suwannaruang T, Kidkhunthod P, Chanlek N, et al. High anatase purity of nitrogen-doped TiO2 nanorice particles for the photocatalytic treatment activity of pharmaceutical wastewater[J]. Applied Surface Science, 2019,478:1−14. doi: 10.1016/j.apsusc.2019.01.158
    [21]
    Tian C X. Effects of hydrolysis conditions on high purity TiO2 preparation from industrial low concentration titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2020,41(2):14−19. (田从学. 低浓度工业钛液制备高纯二氧化钛的水解条件研究[J]. 钢铁钒钛, 2020,41(2):14−19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (190) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return