Volume 42 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Liu Jin. Synthesis of anatase TiO2 nanorods with special exposed surface in a novel solvothermal system[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 31-36. doi: 10.7513/j.issn.1004-7638.2021.03.005
Citation: Liu Jin. Synthesis of anatase TiO2 nanorods with special exposed surface in a novel solvothermal system[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 31-36. doi: 10.7513/j.issn.1004-7638.2021.03.005

Synthesis of anatase TiO2 nanorods with special exposed surface in a novel solvothermal system

doi: 10.7513/j.issn.1004-7638.2021.03.005
  • Received Date: 2021-04-15
  • Publish Date: 2021-06-10
  • Through a novel solvothermal method, single-crystalline anatase TiO2 nanorods were prepared using tetrabutylammonium hydroxide (TBAH) as the morphology controlling agent. The obtained TiO2 nanorods are dominated by a large percentage of {010} facets on the surface. The short-circuit current density Jsc of the dye-sensitized solar cells (DSSCs) made of the TiO2 nanorods is about 10.9 mA/cm2, with the open circuit voltage Voc and photoelectric conversion efficiency at 0.74 V and 5.75%, respectively. Compared with DSSCs made of commercial P25 TiO2, the short-circuit current density, fill factor, and photoelectric conversion efficiency of the cell made of the TiO2 nanorods are increased by 2.83%, 10.94% and 10.58%, respectively. On basis of the material characterizations, the formation mechanisms were discussed preliminarily.
  • loading
  • [1]
    Kavan L, Gratzel M, Gilbert S E, et al. Electrochemical and photoelectrochemical investigation of single-crystal anatase[J]. J. Am. Chem. Soc., 1996,118:6716−6723. doi: 10.1021/ja954172l
    [2]
    Chen J S, Tan Y L, Li C M, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage[J]. J. Am. Chem. Soc., 2010, 132: 6124−6130. https://pubmed.ncbi.nlm.nih.gov/20392065.
    [3]
    Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95: 735−758. https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=2113324.
    [4]
    Mao Y, Wong S S. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures[J]. J. Am. Chem. Soc., 2006,128:8217−8226. doi: 10.1021/ja0607483
    [5]
    Amano F, Yasumoto T, Prieto-Mahaney, et al. Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(IV) oxide[J]. Chem. Commun., 2009, 17: 2311–2313. https://pubs.rsc.org/en/content/articlelanding/2009/cc/b822634b#!divAbstract.
    [6]
    Zhang Z, Wang C C, Zakaria R, et al. Role of particle size in nanocrystalline TiO2-based photocatalysts[J]. J. Phys. Chem. B, 1998,102:10871−10878. doi: 10.1021/jp982948%2B
    [7]
    YangW G, Wan F R, Chen Q W, et al. Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells[J]. J. Mater. Chem., 2010, 20: 2870−2876. https://pubs.rsc.org/en/content/articlelanding/2010/JM/B923105F#!divAbstract.
    [8]
    Yang W, Li J, Wang Y, et al. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells[J]. Chem. Commun., 2011, 47: 1809−1811. https://pubs.rsc.org/en/content/articlelanding/2011/CC/C0CC03312J#!divAbstract.
    [9]
    Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells, 1998,54:265−275. doi: 10.1016/S0927-0248(98)00078-6
    [10]
    TachibanaY, Sayama K, Arakawa H. Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells[J]. Chem. Mater., 2002, 14: 2527−2535. https://pubs.acs.org/toc/cmatex/14/6.
    [11]
    Liu Leng, En Yi. Synthesis, transformation mechanism and photocatalytic properties of various morphologies anatase TiO2 nanocrystals derived from tetratitanate nanobelts[J]. Chemistry Select, 2018,3:9953 −9959.
    [12]
    Pu M. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Appl. Phys. Lett., 2013,102:131906. doi: 10.1063/1.4799162
    [13]
    Lazzeri M, Vittadini A, Selloni A. Erratum: Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Phys. Rev. B, 2002,65(11):119901. doi: 10.1103/PhysRevB.65.119901
    [14]
    Wen P, Ishikawa Y, Itoh H, et al. Topotactic transformation reaction from layered titanate nanosheets into anatase nanocrystals[J]. J Phys Chem C, 2009,113:20275−20280. doi: 10.1021/jp908181e
    [15]
    Wu B, Guo C, Zheng N, et al. Nonaqueous production of nanostructured anatase with high-energy facets[J]. J. Am. Chem. Soc., 2008,130:17563−17567. doi: 10.1021/ja8069715
    [16]
    Liu Jin, Luo Jun, Yang Weiguang, et al. Synthesis of single-crystalline anatase TiO2 nanorods with high-performance dye-sensitized solar cells[J]. J. Mater. Sci. Technol., 2015,31(1):106−109. doi: 10.1016/j.jmst.2014.07.015
    [17]
    Liu C M, Yang S H. Synthesis of angstrom-scale anatasetitania atomic wires[J]. Acs Nano, 2009,3(4):1025−1031. doi: 10.1021/nn900157r
    [18]
    Chemseddine A, Moritz T. Nanostructuringtitania control over nanocrystals structure, size, shape, and organization[J]. Eur. J. Inorg. Chem., 1999,(2):235−245.
    [19]
    Yang Weiguang, Wang Yali, Shi Weimin. One-step synthesis of single-crystal anatase TiO2 tetragonal faceted-nanorods for improved-performance dye-sensitized solar cells[J]. Cryst Eng Comm, 2012,14:230−234. doi: 10.1039/C1CE05844D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (223) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return