Volume 42 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Feng Xuefan, Wang Huazhong, Wang Xiaoming, Yu Wenrui, Yang Yu, Zhang Fuqin. Preparation of carbon fiber supported layered TiC/TiO2 catalyst with potassium ion tuning[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 58-63. doi: 10.7513/j.issn.1004-7638.2021.03.009
Citation: Feng Xuefan, Wang Huazhong, Wang Xiaoming, Yu Wenrui, Yang Yu, Zhang Fuqin. Preparation of carbon fiber supported layered TiC/TiO2 catalyst with potassium ion tuning[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 58-63. doi: 10.7513/j.issn.1004-7638.2021.03.009

Preparation of carbon fiber supported layered TiC/TiO2 catalyst with potassium ion tuning

doi: 10.7513/j.issn.1004-7638.2021.03.009
  • Received Date: 2021-03-17
  • Publish Date: 2021-06-10
  • A carbon fiber supported layered TiC/TiO2 composite catalyst with heterojunction was prepared by in-situ synthesis with potassium ion (K+) tuning. The prepared catalysts were characterized by FE-SEM, XRD, Raman, XPS and AFM. The photocatalytic degradation of pollutants rhodamine B (RhB) by the catalysts was carried out. The results show that the tuning of potassium ion to heterojunction plays an important role in photocatalytic efficiency. In the process of UV-visible-light catalytic degradation, the removal rate of RhB by CFs@TiC/TiO2 reaches 98%. The repeated experiments show that the photocatalytic removal efficiency is more than 90% after three cycles, indicating a well stability. TiC can be grown on the surface of carbon fibers (CFs) via the in-situ growth collaborated by K+, and partial TiC can be transformed into potassium titanate nano particles through hydrothermal process in NaOH solution. The potassium titanate nano particles were then soaked in dilute HCl solution, and flake anatase TiO2 can be formed via heat treatment and dehydration. Finally, carbon fiber supported CFs@TiC/TiO2 composite catalyst with layered heterojunction can be obtained. The flower-like structure formed by potassium titanate nanocrystals has a large specific surface area, which provides the structural characteristics and catalytic activity sites for preparation of CFs@TiC/TiO2 composites.
  • loading
  • [1]
    Zhao L, Chen X, Wang X, et al. One-step solvothermal synthesis of a carbon @TiO2 dyade structure effectively promoting visible-light photocatalysis[J]. Adv. Mater., 2010,22:3317−3321. doi: 10.1002/adma.201000660
    [2]
    Mitchell J W, Gregory L E. Enhancement of overall plant growth, a new response to brassins[J]. Nat. New Biol., 1972,238:37−38.
    [3]
    Deng Q, Liu Y, Mu K, et al. Preparation and characterization of F-modified C-TiO2 and its photocatalytic properties[J]. Phys. Status Solidi Appl. Mater. Sci., 2015,212:691−697. doi: 10.1002/pssa.201431805
    [4]
    Zhang M, Wang Y, Zhang Y, et al. Conductive and elastic TiO2 nanofibrous aerogels: A new concept toward self-supported electrocatalysts with superior activity and durability[J]. Angew. Chemie - Int. Ed., 2020,59:23252−23260. doi: 10.1002/anie.202010110
    [5]
    Cargnello M, Gordon T R, Murray C B. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals[J]. Chem. Rev., 2014,114:9319−9345. doi: 10.1021/cr500170p
    [6]
    Zhou W, Li W, Wang J Q, et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst[J]. J. Am. Chem. Soc., 2014,136:9280−9283. doi: 10.1021/ja504802q
    [7]
    Shen X, Yu R, Ma M, et al. Porous carbon-doped TiO2 on TiC nanostructures for enhanced photocatalytic hydrogen production under visible light[J]. J. Catal., 2017,347:36−44. doi: 10.1016/j.jcat.2016.11.041
    [8]
    Ou Y, Cui X, Zhang X, et al. Titanium carbide nanoparticles supported Pt catalysts for methanol electrooxidation in acidic media[J]. J. Power Sources, 2010,195:1365−1369. doi: 10.1016/j.jpowsour.2009.09.031
    [9]
    Hu Q, Seidelin Dam J, Pedersen C, et al. High-resolution mid-IR spectrometer based on frequency upconversion[J]. Opt. Lett., 2012,37:5232. doi: 10.1364/OL.37.005232
    [10]
    Shitova N B, Drozdov V A, Kolosov P E, et al. Distinctive features of supported catalysts prepared from platinum carbonyl clusters[J]. Kinet. Catal., 2000,41:720−728. doi: 10.1007/BF02754573
    [11]
    Zhang Q, Dandeneau C S, Zhou X, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Adv. Mater., 2009,21:4087−4108. doi: 10.1002/adma.200803827
    [12]
    Son S, Hwang S H, Kim C, et al. Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2013,5:4815−4820. doi: 10.1021/am400441v
    [13]
    Cheng H M, Chiu W H, Lee C H, et al. Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications[J]. J. Phys. Chem. C., 2008,112:16359−16364. doi: 10.1021/jp805239k
    [14]
    Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. Nat. Mater., 2005,4:455−459. doi: 10.1038/nmat1387
    [15]
    Jiang C Y, Sun X W, Lo G Q, et al. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode[J]. Appl. Phys. Lett., 2007,90:3−6.
    [16]
    Martinson A B F, Elam J W, Hupp J T, et al. ZnO nanotube based dye-sensitized solar cells[J]. Nano Letters, 2007,7(8):2183−2187. doi: 10.1021/nl070160+
    [17]
    Prensky H D. Large-scale synthesis of six-nanometer-wide ZnO nanobelts[J]. Int. Endod. J., 1971,5:10−15. doi: 10.1111/j.1365-2591.1971.tb00034.x
    [18]
    Kar S, Dev A, Chaudhuri S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays[J]. J. Phys. Chem. B., 2006,110:17848−17853. doi: 10.1021/jp0629902
    [19]
    Fu M, Zhou J, Xiao Q, et al. ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition[J]. Adv. Mater., 2006,18:1001−1004. doi: 10.1002/adma.200502658
    [20]
    Wang Z L. Zinc oxide nanostructures: Growth, properties and applications[J]. J. Phys. Condens. Matter., 2004,16:829.
    [21]
    Grigoropoulos C P, Sung H J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell[J]. Nano Lett., 2011,11:666−671. doi: 10.1021/nl1037962
    [22]
    Koo H J, KimY J, Lee Y H, et al. Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells[J]. Adv. Mater., 2008,20:195−199. doi: 10.1002/adma.200700840
    [23]
    Usami A. Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells[J]. Sol. Energy Mater. Sol. Cells., 2000,64:73−83. doi: 10.1016/S0927-0248(00)00049-0
    [24]
    Wang Z S, Kawauchi H, Kashima T, et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell[J]. Coord. Chem. Rev., 2004,248:1381−1389. doi: 10.1016/j.ccr.2004.03.006
    [25]
    Lv B, Xia L, Yang Y, et al. Synthesis of nanostructured TiC/TiO2 with controllable morphology on carbon fibers as photocatalyst for degrading RhB and reducing Cr(VI) under visible light[J]. J. Mater. Sci., 2020,55:14953−14964. doi: 10.1007/s10853-020-05071-x
    [26]
    Dong Z J, Li X K, Yuan G M, et al. Synthesis in molten salts and formation reaction kinetics of tantalum carbide coatings on various carbon fibers[J]. Surface & Coatings Technology, 2012,212:169−179.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (283) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return