Volume 42 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Ying Zhenhong, Tan Chong, Shi Qi, Li Guifa, Zheng Haizhong, Liu Xin. Preparation of spherical titanium-tantalum alloy powder for additive manufacturing by radio frequency plasma[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 64-73. doi: 10.7513/j.issn.1004-7638.2021.03.010
Citation: Ying Zhenhong, Tan Chong, Shi Qi, Li Guifa, Zheng Haizhong, Liu Xin. Preparation of spherical titanium-tantalum alloy powder for additive manufacturing by radio frequency plasma[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 64-73. doi: 10.7513/j.issn.1004-7638.2021.03.010

Preparation of spherical titanium-tantalum alloy powder for additive manufacturing by radio frequency plasma

doi: 10.7513/j.issn.1004-7638.2021.03.010
  • Received Date: 2021-04-07
  • Publish Date: 2021-06-10
  • The titanium-tantalum alloy powder prepared by hydrogen decrepitation process with irregular morphology was spheroidized by radio frequency (RF) plasma. The effects of feeding rate, carrier gas flow rate and sheath gas (He) flow rate on the spheroidization efficiency, powder characteristics and microstructure were studied. The selective laser melting (SLM) process of the spherical titanium-tantalum alloy powder was also explored. The results show that the cross-sectional microstructure of the powder is lamellar α″-Ti and cellular β-Ti after spheroidization, with the spheroidization efficiency over 98%. The particle size distribution becomes wider and the average particle size increases from 21.41 μm to 32.30 μm. The spheroidization efficiency is influenced by the feeding rate, carrier gas flow rate, sheath gas (He) flow rate. The best spheroidization efficiency can be obtained at 35 g/min of feeding rate, 5.5 L/min of carrier gas flow rate and 40 L/min of sheath gas (He) flow rate, respectively. Compared with the raw powder, the hall velocity of the spherical titanium-tantalum alloy powder reaches 6.27 s/50 g, with the apparent density and tap density increased from 1.38 g/cm3 to 3.11 g/cm3, 2.54 g/cm3 to 3.48 g/cm3, respectively. The spherical titanium-tantalum alloy powder is compatible with the selective laser melting process. The relative density of the formed parts is over 99%, with the microstructure of acicular α″-Ti and cellular β-Ti. No unmelted tantalum particles can be found in the samples and the vickers hardness of the samples reaches 725 HV.
  • loading
  • [1]
    Niinomi M. Recent metallic materials for biomedical applications[J]. Metallurgical & Materials Transactions A, 2002,33(3):477.
    [2]
    Laheurte P, Prima F, Eberhardt A, et al. Mechanical properties of low modulus β titanium alloys designed from the electronic approach[J]. J Mech Behav Biomed Mater, 2010,3(8):565−573. doi: 10.1016/j.jmbbm.2010.07.001
    [3]
    Xu Lijuan, Xiao S L, Tian J, et al. Microstructure, mechanical properties and dry wear resistance of β-type Ti-15Mo-xNb alloys for biomedical applications[J]. Transactions of Nonferrous Metals Society of China, 2013,23(3):692−698. doi: 10.1016/S1003-6326(13)62518-2
    [4]
    Taekyung, Lee, Yoon-Uk, et al. Microstructure tailoring to enhance strength and ductility in Ti–13Nb–13Zr for biomedical applications[J]. Scripta Materialia, 2013,69(11−12):785−788. doi: 10.1016/j.scriptamat.2013.08.028
    [5]
    Pokluda J. Theoretical strength of solids: recent results and applications[J]. Materials Science, 2012,47(5):492−495.
    [6]
    Ying L Z, Niinomi M, Akahori T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications[J]. Mater Sci Eng A, 2004,371(1/2):283−290.
    [7]
    Zhou Y L, Niinomi M, Akahori T, et al. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications[J]. Materials Science & Engineering A, 2005,398(1−2):28−36.
    [8]
    Yang Xuechun, Jiang Wenjun, Cao Ming, et al. Organization and mechanical properties of selected laser melting aluminum alloys[J]. Machine Tools and Hydraulics, 2021,49(1):21−25, 41. (杨雪春, 江文俊, 曹铭, 等. 选区激光熔化铝合金的组织和力学性能[J]. 机床与液压, 2021,49(1):21−25, 41. doi: 10.3969/j.issn.1001-3881.2021.01.005
    [9]
    Sing, Leong S, Yeong, et al. Selective laser melting of titanium alloy with 50 % tantalum: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2016,660(5):263−265.
    [10]
    Egba B, Aema C, Jef A, et al. Remelt processing and microstructure of selective laser melted Ti25Ta-science direct[J]. Journal of Alloys and Compounds, 2020,820(6):363−366.
    [11]
    Dz A, Ch B, Yan L A, et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting[J]. Journal of Alloys and Compounds, 2019,804:288−298. doi: 10.1016/j.jallcom.2019.06.307
    [12]
    Gou Y J, Chen G, Zhao S Y, et al. Titanium-tantalum alloy powder produced by the plasma rotating electrode process (PREP)[J]. Key Engineering Materials, 2018,770:18−22. doi: 10.4028/www.scientific.net/KEM.770.18
    [13]
    Bai L, Fan J, Peng H, et al. RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate[J]. Journal of Alloys & Compounds, 2009,481(1−2):563−567.
    [14]
    Kumar R, Cheang P, Khor K A. Radio frequency (RF) suspension plasma sprayed ultra-fine hydroxyapatite (HA)/zirconia composite powders[J]. Biomaterials, 2003,24(15):2611−2621. doi: 10.1016/S0142-9612(03)00066-8
    [15]
    A Y Y, A M M H, A T W, et al. Effects of feed rate and particle size on the in-flight melting behavior of granulated powders in induction thermal plasmas[J]. Thin Solid Films, 2008,516(19):6622−6627. doi: 10.1016/j.tsf.2007.11.084
    [16]
    Wang J J, Hao J J, Guo Z M, et al. Preparation of spherical tungsten and titanium powders by RF induction plasma processing[J]. Rare Metals, 2015,34(6):431−435. doi: 10.1007/s12598-014-0293-4
    [17]
    Jiang X L, Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders[J]. Transactions of Nonferrous Metals Society of China, 2006,16(1):13−17. doi: 10.1016/S1003-6326(06)60003-4
    [18]
    Gu Zhongtao, Ye Gaoying, Jin Yuping. Component analysis of spherical titanium powder prepared by radio frequency induction plasma[J]. Intense Laser and Particle Beam, 2012,24(6):1409−1413. (古忠涛, 叶高英, 金玉萍. 射频感应等离子体制备球形钛粉的成分分析[J]. 强激光与粒子束, 2012,24(6):1409−1413. doi: 10.3788/HPLPB20122406.1409
    [19]
    Hou Y B, Zeng K L, Yue-Guang Y U, et al. Plasma spheroidization of tungsten powder[J]. Nonferrous Metals, 2008,(1):41−43.
    [20]
    Harbec D, Gitzhofer F, Tagnit-Hamou A. Induction plasma synthesis of nanometric spheroidized glass powder for use in cementitious materials[J]. Powder Technology, 2011,214(3):356−364. doi: 10.1016/j.powtec.2011.08.031
    [21]
    Zhang Ge, Wang Jianhong, Zhang Hao. Study on spheroidization phenomenon of laser melting in selected areas of metal powder[J]. Casting Technology, 2017,38(2):262−265. (张格, 王建宏, 张浩. 金属粉末选区激光熔化球化现象研究[J]. 铸造技术, 2017,38(2):262−265.
    [22]
    Leong S S, Edith W F, Yee Y W. Selective laser melting of titanium alloy with 50 % tantalum: Effect of laser process parameters on part quality[J]. International Journal of Refractory Metals and Hard Materials, 2018,77:120−127. doi: 10.1016/j.ijrmhm.2018.08.006
    [23]
    Soro N, Attar H, Brodie E, et al. Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019,97(3):326−329.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article views (284) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return