Volume 42 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Wang Zhenling, Yu Yucheng, Li Ruizhi, Li Qiang, Han Jiaping, Ma Lan. Microstructure and high temperature tensile properties of (TiC+TiB) reinforced titanium matrix composites by vacuum induction suspension melting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 54-61. doi: 10.7513/j.issn.1004-7638.2021.05.009
Citation: Wang Zhenling, Yu Yucheng, Li Ruizhi, Li Qiang, Han Jiaping, Ma Lan. Microstructure and high temperature tensile properties of (TiC+TiB) reinforced titanium matrix composites by vacuum induction suspension melting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 54-61. doi: 10.7513/j.issn.1004-7638.2021.05.009

Microstructure and high temperature tensile properties of (TiC+TiB) reinforced titanium matrix composites by vacuum induction suspension melting

doi: 10.7513/j.issn.1004-7638.2021.05.009
  • Received Date: 2021-08-24
  • Publish Date: 2021-10-30
  • (TiC+TiB)/Ti-6Al-4Sn-8Zr-0.8Mo-1.5Nb-1W-0.25Si titanium matrix composites were prepared by vacuum induction suspension melting, with the reinforcement composition volume ratio respectively at 0%, 2% and 4%. The microstructure and high temperature tensile properties of the composites were investigated by metallographic microscope, SEM, XRD, TEM and high temperature tensile testing machine. The results show that the titanium alloy is mainly composed of α-Ti phase and Ti2ZrAl phase, and the Ti2ZrAl phase is distributed at the junction of α-Ti flakes. In addition, there also exist polygonal bulk TiC and long TiB whiskers. The microstructure of the titanium alloy is typical widmandgren structure, and the α-Ti phase presents long needlelike shape with nearly parallel arrangement in the β-Ti grains. In titanium matrix composites, with the increase of reinforcement composition, the length to diameter ratio of α-Ti significantly decreases, and the grain size of β-Ti is refined. The strength of titanium matrix composites is increased significantly at 650~700 ℃. The best strengthening effect appears at 650 ℃ for the composites with 2% reinforcement composition while at 700 ℃ for the composites with 4% reinforcement composition. When the temperature exceeds 700 ℃, the strengthening effect of the reinforcement composition is weakened. The plasticity of the composites is generally low. The strengthening mechanism of the titanium matrix composites are attributed to the grain refinement, solid solution strengthening and load transfer strengthening. The fracture mode of the titanium matrix composites is brittle fracture under high temperature tensile conditions.
  • loading
  • [1]
    Zhang Changjiang, Lin Sibo, Zhang Shuzhi, et al. Effect of TiC on microstructure and mechanical properties of high-temperature titanium matrix composites[J]. Rare Metal Materials and Engineering, 2017,46(S1):185−189. (张长江, 林思波, 张树志, 等. TiC含量对高温钛基复合材料组织功能性能的影响[J]. 稀有金属材料与工程, 2017,46(S1):185−189.
    [2]
    Yi Meng, Zhang Xiangzhao, Liu Guiwu, et al. Comparative investigation on microstructures and mechanical properties of (TiC+TiB)/Ti-6Al-4V composites from Ti-B4C-C and Ti-TiB2-TiC systems[J]. Materials Characterization, 2018,140:281−289. doi: 10.1016/j.matchar.2018.04.010
    [3]
    Zhang Changjiang, Zhang Shuzhi, Hou Zhaoping, et al. Tensile mechanical behavior and failure mechanism of (TiBw+TiCp)/Ti compsites at elevated temperature[J]. The Chinese Journal of Nonferrous Metals, 2016,26(11):2288−2295. (张长江, 张树志, 候赵平, 等. (TiBw+TiCp)/Ti复合材料高温拉伸力学行为与失效机理[J]. 中国有色金属学报, 2016,26(11):2288−2295.
    [4]
    杨明华. 650~750 ℃短时高温钛合金成分优化及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 16−21.

    Yang Minghua. Composition optimization and microstructure and mechanical properties of high temperature alloys for short-term use at 650~700 ℃[D]. Harbin: Harbin Institute of Technology, 2015: 16−21.
    [5]
    刁雨薇. Ti-Al-Sn-Zr-Mo-Nb-W-Si高温钛合金700 ℃拉伸行为研究[D]. 北京: 北京有色金属研究总院, 2019: 18−30.

    Diao Yuwei. The study on tensile behavior of Ti-Al-Sn-Zr-Mo-Nb-W-Si high temperature titanium alloy at 700 ℃[D]. Beijing: General Research Institute for Nonferrous Metals, 2019: 18−30.
    [6]
    曹磊. 熔铸法制备TiC/Ti-6Al-4V复合材料组织与力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 1−6.

    Cao Lei. Research on microstructure and mechanical properties of TiC/Ti-6Al-V composties fabricated by melting-casing process[D]. Harbin: Harbin Institute of Technology, 2010: 1-6.
    [7]
    Cui Yapeng, Chen Ziyong, Ma Xiaozhao, et al. Microstructures and mechanical properties of a new type of high temperature titanium alloy[J]. Materials Science Forum, 2020,993:208−216. doi: 10.4028/www.scientific.net/MSF.993.208
    [8]
    张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005: 140.

    Zhang Xiyan, Zhao Yongqing, Bai Chenguang. Titanium and its application[M]. Beijing: Chemical Industry Press, 2005: 140.
    [9]
    叶园. Zr含量对650 ℃短时高温钛合金显微组织和力学性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2020: 21-50.

    Ye Yuan. Effect of Zr content on microstructure and mechanical properties of high temperature titanium alloys for short-temperature at 650 ℃[D]. Harbin: Harbin Institute of Technology, 2020: 21-50.
    [10]
    宋卫东, 王成, 毛小南. 颗粒增强钛基复合材料-加工制备、性能与表征[M]. 北京: : 科学出版社, 2017: 114.

    Song Weidong, Wang Cheng, Mao Xiaonan. Preparation, properties and characterization of particle reinforced titanium matrix composites [M]. Beijing: Science Press, 2017: 114.
    [11]
    Wang Xiaopeng, Chen Yuyong, Xu Lijuan, et al. Ti-Nb-Sn-hydrotherapy composites synthesized by mechanical alloying and high frequency induction heated sintering[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011,(4):2074−2080.
    [12]
    李冲. 原位合成TiC及TiC+TiB增强TB8钛基复合材料组织与性能研究[D]. 镇江: 江苏大学, 2020: 21-22.

    Li Chong. Research on microstructure and properties of in-situ synthesized TiC and TiC+TiB reinforced TB8 titanium matrix composites[D]. Zhenjiang: Jiangsu University, 2020: 21-22.
    [13]
    Zhang Lei, Yu Jiashi, Xu Kaixuan, et al. Microstructure and microhardness of (GNPs+B)/TC4 titanium matrix composites[J]. Titanium Industry Progress, 2021,38(3):12−16. (张雷, 于佳石, 许凯旋, 等. (GNPs+B)/TC4复合材料组织和硬度研究[J]. 钛工业进展, 2021,38(3):12−16.
    [14]
    曹洪川. 石墨烯增强钛基复合材料的强塑性及摩擦磨损性能研究[D]. 贵阳: 贵州大学, 2020: 31.

    Cao Hongchuan. Study on the strength plasticty and frictionand and wear properties of graphene-reinforced titanium matrix composites[D]. Guiyang: Guizhou Uniersity, 2020: 31.
    [15]
    Li YueYing, Fu Wenzhu, Zhen Liangqiao. Study on mechanical alloying of TiB2 particulate reinforced titanium matrix composite[J]. Applied Mechanics and Materials, 2018, 4579:41−46.
    [16]
    何永亮, 张志勇, 张福利, 等. 真空感应悬浮炉关键技术及装备的发展与应用[C]// 2018中国铸造活动周论文集. 苏州: 中国机械工程学会铸造分会, 2018: 1−4.

    He Yongliang, Zhang Zhiyong, Zhang Fuli, et al. Development and application of key technology and equipment of the vacuum induction levitation furnace[C]// 2018 China Casting Activity Week Proceedings. Suzhou: The Foundry Institution of China Mechanical Engineering Society, 2018: 1−4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (342) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return