Volume 42 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Li Zhiwei, Zeng Zhiqi, Xie Jianbo, Tian Qianren, Fu Jianxun. Transformation of the spine in Mg-treated non-quenched and tempered steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 164-169. doi: 10.7513/j.issn.1004-7638.2021.05.025
Citation: Li Zhiwei, Zeng Zhiqi, Xie Jianbo, Tian Qianren, Fu Jianxun. Transformation of the spine in Mg-treated non-quenched and tempered steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 164-169. doi: 10.7513/j.issn.1004-7638.2021.05.025

Transformation of the spine in Mg-treated non-quenched and tempered steel

doi: 10.7513/j.issn.1004-7638.2021.05.025
  • Received Date: 2021-01-08
  • Publish Date: 2021-10-30
  • Based on the characteristics and formation of the Mg-treated inclusions in non-quenched and tempered steel, the misfit degrees of MgAl2O4+MnS was calculated to reveal the best growth surface and main action forces between the MgAl2O4 inclusions. For Mg free steel, the sulfide in slab edge mainly precipitate in chain shape along grain boundary, while the sulfide in center slab is mainly in rod or angle shape. When Mg is added to the steel, the inclusions at the edge and center of slab are mainly spherical or chain like, and their size are small. The average area of inclusions in center area is reduced from 14.33 μm2 to 8.78 μm2, while in the edge area it is reduced from 3.17 μm2 to 2.99 μm2. Mg addition reduces the equivalent area of inclusions in the steel. The misfit degree between crystal face (110) of MnS and (110) of MgAl2O4 was 7.65%. The main acting force for the attachment of MgAl2O4 was cavity-bridge force of 1×10−8 N.
  • loading
  • [1]
    Xie J B, Zhang D, Yang Q K, et al. Exploration of morphology evolution of the inclusions in Mg-treated 16MnCrS5 steel[J]. Ironmaking and Steelmaking, 2019,6(46):564−573.
    [2]
    Guo Dengyang, Wu Xiaodong, Chen Ruilong, et al. Research on precipitation of inclusions in calcium-treated sulfur- containing 20CrMo gear steel[J]. Iron Steel Vanadium Titanium, 2012,33(6):69−73. (郭登仰, 吴晓东, 陈瑞泷, 等. 钙处理含硫20CrMo齿轮钢夹杂物析出研究[J]. 钢铁钒钛, 2012,33(6):69−73. doi: 10.7513/j.issn.1004-7638.2012.06.015
    [3]
    Jiang Z H, Zhang Y, Yang L I, et al. Effect of modification treatment on inclusions in 430 stainless steel by Mg-Al alloys[J]. Journal of Iron and Steel Research International, 2013,20(5):6−10. doi: 10.1016/S1006-706X(13)60089-8
    [4]
    Zhang T S, Wang D Y, Liu C W, et al. Modification of inclusions in liquid iron by Mg treatment[J]. Journal of Iron and Steel Research International, 2014,21(s1):99−103.
    [5]
    Wang Junhua, Piao Fengyun, Yu Yongchun, et al. Industrial production process of unquenched steel front axle for heavy automobile[J]. Journal of University of Science and Technology Beijing, 2007,29(S1):105−111. (王俊华, 朴峰云, 于咏春, 等. 重型汽车专用非调质钢前轴工业性生产工艺[J]. 北京科技大学学报, 2007,29(S1):105−111.
    [6]
    Luo S J, Su Y H, Lu M J, et al. EBSD analysis of magnesium addition on inclusion formation in SS400 structural steel[J]. Materials Characterization, 2013,82:103−112. doi: 10.1016/j.matchar.2013.05.013
    [7]
    Fan Tian, Yang Qiankun, Xie Jianbo, et al. Effect of Mg on the inclusions in 20CrMo gear steel[J]. Iron Steel Vanadium Titanium, 2019,40(6):149−154. (樊田, 杨乾坤, 谢剑波, 等. 镁对20CrMo齿轮钢中夹杂物的影响[J]. 钢铁钒钛, 2019,40(6):149−154.
    [8]
    Ai Kenan, Xie Jianbo, Zeng Zhiqi, et al. Effect of Mg on microstructure and sulfide in non-quenched and tempered steel[J]. Journal of Iron and Steel Research, 2019,31(4):361−367. (艾克南, 谢剑波, 曾志崎, 等. 镁对非调质钢中组织及硫化物的影响[J]. 钢铁研究学报, 2019,31(4):361−367.
    [9]
    Xiao Guohua, Dong Han, Wang Maoqiu, et al. Effect of Mg/Ca-treatment on morphology of sulfide in non-quenched and tempered steel[J]. Iron & Steel, 2011,46(4):65−69. (肖国华, 董瀚, 王毛球, 等. 镁和镁钙处理对非调质钢中硫化物形态的影响[J]. 钢铁, 2011,46(4):65−69.
    [10]
    Cao L, Wang G C, Yuan X H, et al. Thermodynamics and agglomeration behavior on spinel inclusion in Al-deoxidized steel coupling with Mg treatment[J]. Metals, 2019,9(8):900−911. doi: 10.3390/met9080900
    [11]
    Yuvaloshini J, Shanmugavadivu R, Ravi G. Effect of annealing on optical and structural properties of ZnS/MnS and MnS/ZnS superlattices thin films for solar energy application[J]. Optik International Journal for Light & Electron Optics, 2014,125(6):1775−1779.
    [12]
    Krell A, Waetzig K, Klimke J. Influence of the structure of MgO·nAl2O3 spinel lattices on transparent ceramics processing and properties[J]. Journal of the European Ceramic Society, 2012,32(11):3−9.
    [13]
    Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical and Materials Transactions B, 1970,1(7):1987−1995.
    [14]
    Taniguchi S, Kikuchi A. Mechanisms of collision and coagulation between fine particles in fluid[J]. Tetsu-to-hagane, 1993,78(4):527−535.
    [15]
    Sasai K. Interaction between alumina inclusions in molten steel due to cavity bridge force[J]. ISIJ International, 2016,56(6):1013−1022. doi: 10.2355/isijinternational.ISIJINT-2016-038
    [16]
    Chan D, Henry J, White L R. The interaction of colloidal particles collected at fluid interfaces[J]. Journal of Colloid and Interface Science, 1981,79(2):410−418. doi: 10.1016/0021-9797(81)90092-8
    [17]
    Bratko D, Curtis R A, Blanch H W, et al. Interaction between hydrophobic surfaces with metastable intervening liquid[J]. Journal of Chemical Physics, 2001,115(8):3873−3877. doi: 10.1063/1.1386926
    [18]
    Lei Shaolong, Jiang Min, Yang Die, et al. Effect of oxides on MnS precipitation in aluminum-deoxidized steel[J]. Journal of University of Science and Technology Beijing, 2013,35(11):1443−1449. (雷少龙, 姜敏, 杨叠, 等. Al脱氧钢中氧化物对MnS析出的影响[J]. 北京科技大学学报, 2013,35(11):1443−1449.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (224) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return