Citation: | Zhang Yawei, Shi Qi, Tan Chong, Liu Xin, Li Guifa, Zheng Haizhong. Effects of raw powder on NiTi parts fabricated by selective laser melting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 90-96. doi: 10.7513/j.issn.1004-7638.2021.06.012 |
[1] |
Elahinia M H, Hashem M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review[J]. Progress in Materials Science, 2012,57(5):911−946. doi: 10.1016/j.pmatsci.2011.11.001
|
[2] |
Zhao X. Additive manufacturing NiTi shape memory alloy and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2016,507(12):34−41.
|
[3] |
Andani M T, Moghaddam N S, Haberland C, et al. Metals for bone implants. Part 1. Powder metallurgy and implant rendering[J]. Acta Biomaterialia, 2014,10(10):4058−4070. doi: 10.1016/j.actbio.2014.06.025
|
[4] |
Moghaddam N S, Skoracki R, Miller M, et al. Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair[J]. Procedia CIRP, 2016,49:45−50. doi: 10.1016/j.procir.2015.07.027
|
[5] |
Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems[J]. Trends in Biotechnology, 2004,22(7):354−362. doi: 10.1016/j.tibtech.2004.05.005
|
[6] |
Thijs L, Montero Sistiaga M, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum[J]. Acta Materialia, 2013,61(12):4657−4668. doi: 10.1016/j.actamat.2013.04.036
|
[7] |
Ng C C, Savalani M M, Lau M L, et al. Microstructure and mechanical properties of selective laser melted magnesium[J]. Applied Surface Science, 2011,257(17):7447−7454. doi: 10.1016/j.apsusc.2011.03.004
|
[8] |
Zhang B, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder[J]. Journal of Materials Science & Technology, 2013,29(9):863−867.
|
[9] |
Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders[J]. Journal of Materials Processing Technology, 2019:152−161.
|
[10] |
Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy[J]. Materialia, 2019,6:55−75.
|
[11] |
Yang Y, Huang Y, Wu W. One-step shaping of NiTi biomaterial by selective laser melting [C]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2007.
|
[12] |
Li R, Liu J, Shi Y, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. International Journal of Advanced Manufacturing Technology, 2012,59:1025−1035. doi: 10.1007/s00170-011-3566-1
|
[13] |
Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Materials & Structures, 2014,23:55−67.
|
[14] |
Li S, Hassanin H, Attallah M M, et al. The development of TiNi-based negative poisson's ratio structure using selective laser melting[J]. Acta Materialia, 2016,105:75−83. doi: 10.1016/j.actamat.2015.12.017
|
[15] |
Zhang L, Chen X, Xia T. Development of NiTi porous alloys prepared by SHS process[J]. Powder Metallurgy Industry, 2007,17(3):48−51.
|
[16] |
Gu D, Ma C. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites[J]. Applied Surface Science, 2018:862−870.
|
[17] |
Buehler W J, Gilfrich J V, Wiley R C. Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963,34(5):1475−1477. doi: 10.1063/1.1729603
|
[18] |
Nishida M, Wayman C M, Honma T. Precipitation processes in near-equiatomic TiNi shape memory alloys[J]. Metallurgical Transactions A, 1986,17A:1505−1515.
|
[19] |
Montero-Sistiaga M L, Miguel G M, Kurt B, et al. Microstructure evolution of 316 L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 2018,23:402−410. doi: 10.1016/j.addma.2018.08.028
|
[20] |
Jiang X, Xia W, Lou D, et al. Effect of scanning speed on internal defects and mechanical properties of Ti-6Al-4V alloy processed by selective laser melting[J]. Matertials for Mechanical Engineering, 2020,44(11):41−45.
|
[21] |
Zhang B, Fenineche N E, Zhu L, et al. Studies of magnetic properties of permalloy (Fe–30%Ni) prepared by SLM technology[J]. Journal of Magnetism and Magnetic Materials, 2012,324(4):495−500. doi: 10.1016/j.jmmm.2011.08.030
|
[22] |
Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review[J]. Progress in Materials Science, 2016,83(10):630−636.
|
[23] |
Meier H, Haberland C. Experimental studies on selective laser melting of metallic parts[J]. Materialwissenschaft und Werkstofftechnik, 2008,39(9):665−70. doi: 10.1002/mawe.200800327
|
[24] |
Gao F, Wang H M. Dry sliding wear property of a laser melting/deposited Ti2Ni/TiNi intermetallic alloy[J]. Intermetallics, 2008,16:202−208. doi: 10.1016/j.intermet.2007.09.008
|
[25] |
Ma Y, Liu Y, Shi W, et al. Effect of scanning speed on forming defects and properties of selective laser melted 316 L stainless steel powder[J]. Laser & Optoelectronics Progress, 2019,56(10):55−64.
|