Volume 43 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Yin Xianglu, Zeng Zehua, Gao Rongrong, Dai Yu, Teng Aijun. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001
Citation: Yin Xianglu, Zeng Zehua, Gao Rongrong, Dai Yu, Teng Aijun. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001

Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere

doi: 10.7513/j.issn.1004-7638.2022.01.001
  • Received Date: 2021-12-01
    Available Online: 2022-04-24
  • Publish Date: 2022-02-28
  • M-phase vanadium dioxide (VO2) is a major thermally induced phase change material with a phase change temperature of 68 ℃. Due to obvious changes in physical and chemical properties before and after the phase change, M-phase VO2 can be widely used in the fields of phase change energy saving and sensing. Based on vanadyl oxalate as precursor in this particle, monoclinic phase vanadium dioxide with ultrafine particles was directly prepared by a thermal decomposition process in an inert gas atmosphere. The influences of reaction conditions on the phase purity of the product were explored, including pyrolysis temperature, pyrolysis time and gas flow rate. Under the optimal preparation conditions, relatively pure M-phase VO2 with ultrafine particles was prepared. The morphology and phase change properties of the products were characterized by scanning electron microscope and differential thermal analyzer. The obtained ultrafine particles in M-phase VO2 were mainly cuboid-like micron-sized particles, with irregularly shaped nano-sized fine particles attached to the surface. The average size of micron and nano particles were respectively 5.76 μm and 177.21 nm. The phase transition temperature was about 65 ℃. The method is simple, efficient, and easy to scale up to prepare M-phase VO2 with ultrafine particles.
  • loading
  • [1]
    Wang Shufen, Liu Minsu, Kong Lingbing, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science, 2016,81:1−54. doi: 10.1016/j.pmatsci.2016.03.001
    [2]
    Li Kaibin, Li Ming, Xu Chang, et al. VO2(M) nanoparticles with controllable phase transition and high nanothermochromic performance[J]. Journal of Alloys and Compounds, 2019,11:5602.
    [3]
    Zhu Guang, Huo Yuehua, Shi Yanqiong. Switchable broadband terahertz absorber based on temperature control[J]. Laser & Optoelectronics Progress, 2021,58(13):1316001. (朱广, 霍跃华, 史艳琼. 基于温度控制的可切换宽带太赫兹吸波器[J]. 激光与光电子学进展, 2021,58(13):1316001.
    [4]
    Negm Ayman, Bakr Mohamed, Howlader Matiar, et al. Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches[J]. Smart Materials and Structures, 2021,30(7):075011. doi: 10.1088/1361-665X/abfb86
    [5]
    Liu Ying. Xu Xiang. Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity[J]. Nano Energy, 2021,86:106124. doi: 10.1016/j.nanoen.2021.106124
    [6]
    Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters, 1959,3:34−36. doi: 10.1103/PhysRevLett.3.34
    [7]
    Leroux C, Nihoul G, Tendeloo G V. From VO2(B) to VO2(R): Theoretical structures of VO2 polymorphs and in situ electron microscopy[J]. Phys. rev. b, 1998,57:5111−5121.
    [8]
    Wen Zeng, Chen Nan, Xie Weiguang. Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows[J]. Cryst Eng. Comm., 2020,22:851−869. doi: 10.1039/C9CE01655D
    [9]
    Amador-Alvarado S, Flores-Camacho J M, Solís-Zamudio A, et al. Temperature-dependent infrared ellipsometry of Mo-doped VO2 thin films across the insulator to metal transition[J]. Scientific Reports, 2020, 10: 8555.
    [10]
    Luo Juan, Hu Fangrong, Li Guangyuan. Broadband switchable terahertz half-quarter-wave plate based on VO2-metal hybrid metasurface with over underdamped transition[J]. Journal of Physics D: Applied Physics , 2021, 54: 505111.
    [11]
    Yi Jing, Yan Wenbin, Zhang Xiaojun, et al. Hydrothermal synthesis of nano vanadium oxide powder[J]. Fine Chemicals, 2016,33(4):361−365. (易静, 颜文斌, 张晓君, 等. 水热法制备纳米二氧化钒粉体[J]. 精细化工, 2016,33(4):361−365.
    [12]
    Liu Bo, Peng Sui, Chen Yong, et al. Effect of chemical precipitation process on particle size of VO precursor and its hydrothermal crystallization[J]. Iron Steel Vanadium Titanium, 2020,41(5):58−65. (刘波, 彭穗, 陈勇, 等. 化学沉淀过程对VO2前驱体粒径的影响及其水热晶化的研究[J]. 钢铁钒钛, 2020,41(5):58−65.
    [13]
    Jongbae Kim, Lee Donguk Lee, Yeo Inyeok, et al. Hydrothermal synthesis of monoclinic vanadium dioxide nanocrystals using phase-pure vanadium precursors for high-performance smart windows[J]. Solar Energy Materials and Solar Cells, 2021,226:111055. doi: 10.1016/j.solmat.2021.111055
    [14]
    Sa L, Ea T. Synthesis of vandium of vandium oxide powders by evaporative decomposition of solutions[J]. Journal of the American Ceramic Society, 1995,1:104−108.
    [15]
    Zhao Zhengjing, Yi Liu, Yu Zhinong, et al. Sn-W Co-doping improves thermochromic performance of VO2 films for smart windows[J]. ACS Applied Energy Materials, 2020,3(10):9972−9979. doi: 10.1021/acsaem.0c01651
    [16]
    Chen Zhang, Gao Yanfeng, Kang Litao, et al. Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil[J]. Journal of Materials Chemistry, 2014,2:2781. doi: 10.1039/c3ta13727a
    [17]
    Li Dengbing, Li Ming, Pan Jing, et al. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance[J]. Acs Applied Materials & Interfaces, 2014,6(9):6555−6561.
    [18]
    Huang Weigang, Lin Hua, Tu Mingjing. Preparation of VO2 nanopowder by thermal decomposition of VOC2O4·H2O and its phase transition characteristic[J]. Journal of Functional Materials, 2006,3:440−441. (黄维刚, 林华, 涂铭旌. VOC2O4·H2O热分解制备纳米VO2粉体及相变特性[J]. 功能材料, 2006,3:440−441. doi: 10.3321/j.issn:1001-9731.2006.03.031
    [19]
    Peng Zifei, Wei Jiang, Liu Heng. Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis[J]. The Journal of Physical Chemistry C, 2007,111:1119−1122.
    [20]
    Kong Fongyu, Li Ming, Pan Shusheng, et al. Synthesis and thermal stability of W-doped VO2 nanocrystals[J]. Materials Research Bulletin ,2011, 46: 2100-2104.
    [21]
    Lin Hua, Zou Jian, Li Qing. Preparation and characterization of VO2 nano-powder by thermal decomposing VOC2O4·H2O[J]. Iron Steel Vanadium Titanium, 2006,21(1):55−58. (林华, 邹建, 李庆. 草酸氧钒热分解制备纳米VO2及粉体表征[J]. 钢铁钒钛, 2006,21(1):55−58.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (241) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return