Volume 43 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Li Kaimao, Wang Haibo, Xiao Jun. Experimental study on the acidolysis reaction of low-grade titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 13-18, 98. doi: 10.7513/j.issn.1004-7638.2022.01.003
Citation: Li Kaimao, Wang Haibo, Xiao Jun. Experimental study on the acidolysis reaction of low-grade titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 13-18, 98. doi: 10.7513/j.issn.1004-7638.2022.01.003

Experimental study on the acidolysis reaction of low-grade titanium slag

doi: 10.7513/j.issn.1004-7638.2022.01.003
  • Received Date: 2021-10-22
    Available Online: 2022-04-24
  • Publish Date: 2022-02-28
  • Regarding the problem that low acidolysis rate occurs frequently at the beginning of the experiment in low-grade titanium slag, an investigation was proposed to elaborate the relationship among the phase composition, acidolysis temperature curve, and standard heat of reaction for the chemical reaction in low-grade titanium slag and slag 74 (the titanium slag is 74%). Moreover, the effects of acid concentration, initiation temperature, primary reaction time, and acid-slag ratio on the acid hydrolysis rate of low-grade titanium slag were also investigated. The results show that the low acidolysis rate in low-grade titanium slag is not caused by the formation of the insoluble sulfuric acid phase but is related to the acidolysis reaction rate. One of the main reasons for the increasing acidolysis reaction rate and the decreasing primary reaction time in low-grade titanium is the increased initiation temperature. Appropriately reducing the initiation temperature can meet the demand of external heating to supplement heat for acidolysis in low-grade titanium slag. The acidolysis rate of slag 1# increases from 78.98% to 94.31%, and that of slag 2# increases from 71.77% to 91.19%, respectively, by reducing the concentration of reaction acid and the initiation temperature and prolonging the primary reaction time. In addition, compared with the phase of the residue obtained before optimization, the peak value about M2TiO5 is decreased, and a new phase (Ca(Mg,Fe,Al)(Si,Al)2O6) is formed in the phase of the residue.
  • loading
  • [1]
    Bi Sheng. Status and development of titanium dioxide industry in 2019[J]. Iron Steel Vanadium Titanium, 2019,40(4):1−3. (毕胜. 2019年中国钛白粉工业状况及发展趋势[J]. 钢铁钒钛, 2019,40(4):1−3. doi: 10.7513/j.issn.1004-7638.2019.04.001
    [2]
    Tang Jian. Analysis on production cost of titanium dioxide by sulfuric acid method[J]. Inorganic Chemicals Industry, 2009,(6):43−46. (唐建. 硫酸法钛白粉生产成本分析[J]. 无机盐工业, 2009,(6):43−46. doi: 10.3969/j.issn.1006-4990.2009.06.014
    [3]
    Xiao Jun. A brief analysis of the industrial development of titanium dioxide by sulfuric acid method and Panzhihua titanium slag[J]. China Nonferrous Metallurgy, 2019,(5):31−35. (肖军. 硫酸法钛白与攀枝花钛渣产业发展浅析[J]. 中国有色冶金, 2019,(5):31−35. doi: 10.3969/j.issn.1672-6103.2019.05.009
    [4]
    Zhang Shuli, Cheng Xiaozhe, Hu Hongfei. Study on digestion technology of acid-dissolved titanium slag[J]. Iron Steel Vanadium Titanium, 2003,24(1):39−45. (张树立, 程晓哲, 胡鸿飞. 酸溶性钛渣酸解工艺研究[J]. 钢铁钒钛, 2003,24(1):39−45. doi: 10.3969/j.issn.1004-7638.2003.01.008
    [5]
    Zou Jianxin, Wang Rongkai. Study on acid digesting titania slag during titanium dioxide production[J]. Modern Chemical Industry, 2003,26:273−276. (邹建新, 王荣凯. 钛渣替代钛矿制备钛白酸解试验研究[J]. 现代化工, 2003,26:273−276.
    [6]
    Wang Bin, Cheng Xiaozhe, Han Kexi, et al. Research of acidolysis performance of acid-soluble titanium slag[J]. Iron Steel Vanadium Titanium, 2009,30(2):6−11. (王斌, 程晓哲, 韩可喜, 等. 酸溶性钛渣酸解性能研究[J]. 钢铁钒钛, 2009,30(2):6−11. doi: 10.7513/j.issn.1004-7638.2009.02.002
    [7]
    Shui Bigang, Ma Weiping, Cheng Xiaozhe, et al. Study on continuous acidolysis technology of titanium slag[J]. Inorganic Chemicals Industry, 2013,45(9):31−34. (税必刚, 马维平, 程晓哲, 等. 钛渣连续酸解工艺技术研究[J]. 无机盐工业, 2013,45(9):31−34. doi: 10.3969/j.issn.1006-4990.2013.09.010
    [8]
    Li Liang. Research on the acidolysis technology of Panzhihua vanadic titanomagnetite deeply reducing slag[J]. Light Metals, 2010,(5):50−55. (李亮. 熔分渣酸解性能研究[J]. 轻金属, 2010,(5):50−55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article views (141) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return