Volume 43 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Huo Hongying, Tong Yanwei. Photocatalytic process optimization study of vanadium and nitrogen co-doped Ti-bearing blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 74-79. doi: 10.7513/j.issn.1004-7638.2022.01.011
Citation: Huo Hongying, Tong Yanwei. Photocatalytic process optimization study of vanadium and nitrogen co-doped Ti-bearing blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 74-79. doi: 10.7513/j.issn.1004-7638.2022.01.011

Photocatalytic process optimization study of vanadium and nitrogen co-doped Ti-bearing blast furnace slag

doi: 10.7513/j.issn.1004-7638.2022.01.011
  • Received Date: 2021-09-24
    Available Online: 2022-04-24
  • Publish Date: 2022-02-28
  • The characteristics of the photocatalysts can be prepared using Ti-bearing blast furnace slag containing TiO2 to realize Ti-bearing blast furnace slag′s high added value and reasonable comprehensive utilization. Photocatalytic material derived from vanadium and nitrogen co-doped Ti-bearing blast furnace slag was produced by two-step doping approach (high-temperature solid-phase sintering method was used to adulterate vanadium source and liquid-phase method was used to adulterate nitrogen source). The raw material was Ti-bearing blast furnace slag produced from Pangang. At the same time, ammonium nitrate and ammonium metavanadate were carried out as the nitrogen source and the vanadium source, respectively. The effects of calcination temperature, doping amount and calcination time on the degradation rate of simulated pollutant methylene blue solution were investigated under ultraviolet light, and SEM and XRD characterized the photocatalytic activity. The results show that the co-doping of vanadium and nitrogen has a negligible effect on the crystal structure of blast furnace slag but can increase the specific surface area of blast furnace slag and improve its photocatalytic activity. The N/Ti molar ratio is 30% and the mass percentage of ammonium metavanadate TiO2 was 45% when the calcination temperature was 300 ℃. In addition, the degradation rate of the prepared vanadium and nitrogen co-doped Ti-bearing blast furnace slag photocatalyst reached 97.0% when the calcination time was 2 h, which was 47.0% higher than that before doping.
  • loading
  • [1]
    Huo Hongying, Li Ruiping. Research process on photocatalytic materials of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020,1(4):36−41. (霍红英, 李瑞萍. 高钛型高炉渣光催化材料研究进展[J]. 矿产综合利用, 2020,1(4):36−41. doi: 10.3969/j.issn.1000-6532.2020.04.006
    [2]
    Huo Hongying, Zou Min. Reparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material[J]. Iron Steel Vanadium Titanium, 2021,42(1):65−69. (霍红英, 邹敏. 钴掺杂高钛型高炉渣光催化材料制备及性能优化[J]. 钢铁钒钛, 2021,42(1):65−69.
    [3]
    施丽丽. 含钛高炉渣物理化学特性的实验研究[D]. 贵阳: 贵州大学, 2009.

    Shi Lili. Experimental study on physical chemistry characteristics of titanium-bearing blast furnace slag[D]. Guiyang: Guizhou University, 2009.
    [4]
    Li Yang, Yue Yi, Que Zaiqing, et al. Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag[J]. International Journal of Minerals Metallurgy and Materials, 2013,20(10):1012−1020. doi: 10.1007/s12613-013-0828-y
    [5]
    Yang He, Xue Xiangxin, Zuo Liang, et al. Photocatalytic degradation of blue with blast furnace slag containing titania[J]. The Chinese Journal of Process Engineering, 2004,(3):265−268. (杨合, 薛向欣, 左良, 等. 含钛高炉渣催化剂光催化降解亚甲基蓝[J]. 过程工程学报, 2004,(3):265−268. doi: 10.3321/j.issn:1009-606X.2004.03.014
    [6]
    Ma Xingguan, Ma Zhixiao, Yang He, et al. Experimental study on the degradation of the furfural waste water with titaniferous blast furmace slag[J]. Environmental Protection Science, 2009,35(5):15. (马兴冠, 马志孝, 杨合, 等. 含钛高炉渣光催化降解糠醛废水[J]. 环境保护科学, 2009,35(5):15. doi: 10.3969/j.issn.1004-6216.2009.05.005
    [7]
    Higanshimoto S, Tanihata W, Nakagawa, et al. Effective photocatalytic decomposition of VOC under visible light irradiation on N-doped TiO2 modified by vanadium species[J]. Applied Catalysis A:General, 2008,340(1):98−104. doi: 10.1016/j.apcata.2008.02.003
    [8]
    Liu Jianwan, Han Rui, Zhao Yi. Enhanced photoactivity of V-N codoped TiO2 derived from a two-step hydrothermal procedure for the degradation of PCP-Na under visible light irradiation[J]. Journal of Physics and Chemistry C, 2011,115:4507−4515. doi: 10.1021/jp110814b
    [9]
    Li Qi, Han Lijuan, Liu Gang, et al. Synthesis, characterization and degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013,32(6):1073−1080. (李琪, 韩立娟, 刘刚, 等. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013,32(6):1073−1080.
    [10]
    Wang Hui, Xue Xiangxin, Yang He, et al. Study of preparation of V5+ doped titanium-bearing blast furnace slag and its antibacterial capability[J]. Iron Steel Vanadium Titanium, 2009,30(4):6−10. (王辉, 薛向欣, 杨合, 等. V5+掺杂含钛高炉渣光催化抗菌材料的制备及抗菌性能研究[J]. 钢铁钒钛, 2009,30(4):6−10.
    [11]
    Zhou Mi, Yang He, Piao Erjun, et al. Effect of rare earth metal doping on photocatalytic performance of titania-bearing blast furnace slag[J]. Iron and Steel, 2010,45(10):90−94. (周密, 杨合, 卜二军, 等. 掺杂稀土金属对含钛高炉渣光催化性能影响[J]. 钢铁, 2010,45(10):90−94.
    [12]
    Zhang Shiqiu, Wang Weiqing. Manganese nodilied Ti-bearing blast furnace slag type photocatalyst degrade Cr6+ in waste water[J]. Metal Mine, 2017,(5):181−184. (张士秋, 王维清. 锰改性含钛高炉渣光催化剂降解废水中的Cr6+[J]. 金属矿山, 2017,(5):181−184. doi: 10.3969/j.issn.1001-1250.2017.05.035
    [13]
    中国国家标准化管理委员会. GB/T 23762-2009 光催化材料水溶液体系净化测试方法[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of China. GB/T 23762-2009 Test method for purification of aqueous solution systems of photocatalytic materials[S]. Beijing: China Standard Press, 2010.
    [14]
    刘畅. 氮掺杂含钛高炉渣处理Cr(Ⅵ)废水的研究[D]. 沈阳: 东北大学, 2018.

    Liu Chang. Study on treatment of Cr(Ⅵ) wastewater by nitrogen-doped titanium-bearing blast furnace slag[D]. Shenyang: Northeastern University, 2018.
    [15]
    Chu Shaobin, Zhou Lizhen, Wang Zhongmin. A study of thermal decompositon of ammonium metavanadate[J]. The Chinese Journal of Process Engineering, 1991,3(1):69−70. (储绍彬, 周丽珍, 王忠敏. 偏钒酸铵热分解研究[J]. 过程工程学报, 1991,3(1):69−70. doi: 10.3321/j.issn:1009-606X.1991.01.011
    [16]
    Huo Hongying. Optimization of photocatalytic performance of ammonium metavanadate doped high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020,(6):43−47. (霍红英. 偏钒酸铵掺杂高钛型高炉渣的光催化性能优化[J]. 矿产综合利用, 2020,(6):43−47. doi: 10.3969/j.issn.1000-6532.2020.06.008
    [17]
    Zhou Caixia. Study on preparation and catalytic kinetics of TiO2 photocatalyst[J]. Chemical Enterprise Management, 2017,10(26):73−75. (周彩霞. TiO2光催化材料的制备及催化动力学研究[J]. 化工管理, 2017,10(26):73−75. doi: 10.3969/j.issn.1008-4800.2017.26.066
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (151) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return