Volume 43 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Li Yufei, Liu Yu. Study on the photocatalytic degradation of disinfection by-product TCM in drinking water by Fe3+/GO-TiO2 thin films[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 85-90. doi: 10.7513/j.issn.1004-7638.2022.01.013
Citation: Li Yufei, Liu Yu. Study on the photocatalytic degradation of disinfection by-product TCM in drinking water by Fe3+/GO-TiO2 thin films[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 85-90. doi: 10.7513/j.issn.1004-7638.2022.01.013

Study on the photocatalytic degradation of disinfection by-product TCM in drinking water by Fe3+/GO-TiO2 thin films

doi: 10.7513/j.issn.1004-7638.2022.01.013
  • Received Date: 2021-10-21
    Available Online: 2022-04-24
  • Publish Date: 2022-02-28
  • This paper used the sol-gel method to prepare Fe3+ doped GO-TiO2 films with different proportions on glass substrates. The samples were characterized by X-ray diffraction (XRD) and ultraviolet-visible spectrometer (UV-Vis). The photocatalytic degradation of TCM was irradiated under a UV lamp with a power of 20 W and wavelength of 254 nm for 210 min to investigate the effects of Fe3+ doping ratio, film calcination temperature, film layers, and film reuse times on the degradation. The results show that the samples are anatase, and the doping of Fe3+ reduces the crystal size, and a redshift occurs. The degradation effect of TCM increases with the increase of Fe3+ doping ratio, and the film formed by calcination at 400 ℃ is the best. Whether Fe3+ is doped or not, multiple coating can improve the degradation rate of TCM. The degradation ability of each film tends to be stable after being reused four times.
  • loading
  • [1]
    Tong Zhongchen, Yuan Jian, Yuan Hongying, et al. Advances in research of trihalomethanes and haloacetic acids of chlorination disinfection by-products in drinking water treatment[J]. Water Purification Technology, 2012,31(2):6−11. (仝重臣, 员建, 苑宏英, 等. 饮用水处理中氯化消毒副产物三卤甲烷和卤代乙酸研究进展[J]. 净水技术, 2012,31(2):6−11. doi: 10.3969/j.issn.1009-0177.2012.02.002
    [2]
    Rook J J. Formation of haloform during chlorination of natural waters[J]. Water Treatm Exam, 1974,23(2):234−243.
    [3]
    Bellar T A, Lichtenberg J J, Kroner R C. The occurrence of organohalides in chlorinated drinking waters[J]. Journal American Water Works Association, 1974,66(12):703−706. doi: 10.1002/j.1551-8833.1974.tb02129.x
    [4]
    Chen Zhirong, Pei Xinrong, Zhang Fenglan, et al. Research progress and risk assessment of the toxicology of chloroform[J]. Chinese Pharmaceutical Affairs, 2014,28(2):190−194. (陈志蓉, 裴新荣, 张凤兰, 等. 氯仿的毒理学研究现状及氯仿残留的风险性评估[J]. 中国药事, 2014,28(2):190−194.
    [5]
    Hu Yanhua, Xu Couyou, Huang Qixiang, et al. Research progress of chlorination disinfection by-products in drinking water on human health and technologies for treatment of drinking water[J]. Guangdong Chemical Industry, 2010,37(4):16−17. (胡衍华, 徐凑友, 黄其祥, 等. 饮用水氯化消毒副产物对人体健康的影响及处理技术研究进展[J]. 广东化工, 2010,37(4):16−17. doi: 10.3969/j.issn.1007-1865.2010.04.008
    [6]
    Han Yaoxia, Zhang Yu, Li Jiaona. Simply analyzing the controlling of the accessory substance from chlorine disinfect in drinking water[J]. Shanxi Architecture, 2006,(1):189−190. (韩耀霞, 张瑜, 李娇娜. 浅析饮用水中氯化消毒副产物的控制[J]. 山西建筑, 2006,(1):189−190. doi: 10.3969/j.issn.1009-6825.2006.01.123
    [7]
    Guo Qing, Zhou Chuanyao, Ma Zhibo, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges[J]. Advanced Materials, 2019,31(50):1901997. doi: 10.1002/adma.201901997
    [8]
    Zhu Jiaxin, Xiong Yuhua, Guo Rui. Research progress in modification of TiO2 photocatalyst[J]. Inorganic Chemicals Industry, 2020,52(3):23−27,54. (朱佳新, 熊裕华, 郭锐. 二氧化钛光催化剂改性研究进展[J]. 无机盐工业, 2020,52(3):23−27,54. doi: 10.11962/1006-4990.2019-0245
    [9]
    李宁, 张伟, 李贵贤, 等. TiO2光催化剂的研究进展[J/OL]. 精细化工: 1-11[2021-09-25]. https://doi.org/10.13550/j.jxhg.20210582.

    Li Ning, Zhang Wei, Li Guixian, et al. Research progress of TiO2 photocatalysts[J/OL]. Fine Chemicals: 1-11[2021-09-25]. https://doi.org/10.13550/j.jxhg.20210582.
    [10]
    Wang Xian, Gong Zheng, Yu Qi, et al. Application of modified TiO2 photocatalysis technology in black and odorous water body remediation[J]. Water Purification Technology, 2021,40(9):104−112,118. (汪娴, 龚正, 于琦, 等. TiO2光催化剂改性技术在黑臭水体治理中的应用[J]. 净水技术, 2021,40(9):104−112,118.
    [11]
    He Yanan, Jia Ying, Zhang Yongyong, et al. Study of TiO2-graphene oxide by sol-gel method using as a photocatalyst[J]. Applied Chemical Industry, 2015,44(3):506−509,514. (贺亚南, 贾瑛, 张永勇, 等. 溶胶-凝胶法制备TiO2-GO光催化剂的研究[J]. 应用化工, 2015,44(3):506−509,514.
    [12]
    刘美玲. 碳纤维负载二氧化钛光催化材料的制备及其可见光活性研究[D]. 长春: 长春工业大学, 2016.

    Liu Meiling. Preparation of titania photocatalyst supported on carbon fiber and its photocatalytic activity under visible light[D]. Changchun : Changchun University of Technology, 2016.
    [13]
    Zhang Jianwei, Yuan Peng, Wang Jianqiao, et al. Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance[J]. Chinese Journal of Environmental Engineering, 2020,14(7):1852−1861. (张建伟, 苑鹏, 王建桥, 等. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020,14(7):1852−1861. doi: 10.12030/j.cjee.201909119
    [14]
    王冀霞. 石墨烯和银掺杂二氧化钛复合膜的光催化性能研究[D]. 秦皇岛: 燕山大学, 2016.

    Wang Jixia. Study on photocatalytic properties of Ag-TiO2/Graphene composite film[D]. Qinghuangdao: Yanshan University, 2016.
    [15]
    GB/T 5750.8—2006. 生活饮用水标准检验方法-有机物指标[S].

    GB/T 5750.8—2006. Standard examination methods for drinking water-organic parameters[S].
    [16]
    Uwe Holzwarth, Neil Gibson. The scherrer equation versus the 'Debye-Scherrer equation'[J]. Nature Nanotechnology, 2011,6(9):534−534. doi: 10.1038/nnano.2011.145
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (132) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return