Volume 43 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Li Liang. Study on preparation of silicon vanadium alloy by direct smelting of corundum slag with low vanadium content[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 99-104. doi: 10.7513/j.issn.1004-7638.2022.01.015
Citation: Li Liang. Study on preparation of silicon vanadium alloy by direct smelting of corundum slag with low vanadium content[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 99-104. doi: 10.7513/j.issn.1004-7638.2022.01.015

Study on preparation of silicon vanadium alloy by direct smelting of corundum slag with low vanadium content

doi: 10.7513/j.issn.1004-7638.2022.01.015
  • Received Date: 2021-08-09
    Available Online: 2022-04-24
  • Publish Date: 2022-02-28
  • Corundum slag is a solid waste produced in smelting 50 or 80 vanadium iron by thermite process. In order to improve the utilization value of corundum slag, the primary raw materials in this investigation were corundum slag, ferrosilicate, limestone, calcium carbide and sodium carbonate, respectively. Moreover, the silicon-vanadium alloy was prepared by electric furnace smelting. Limestone was selected as a slag-forming agent to investigate the effect of the addition amount of limestone on the slag phase and the yield of vanadium. The results show that the recovery rate of vanadium can reach 96.5% when the content of CaO in the final slag is 22%. The yield of vanadium increases to the maximum of 96.2% when the silicon blending coefficient increases to 105% under ferrosilicon are selected as reducing agent condition. Moreover, the dephosphorization rate increases to the maximum of 72% when the addition amount of CaC2 reaches 3.5% under calcium carbide is selected as a dephosphorization agent condition. In addition, the desulfurization rate increases from 70% to 86% when the CaO content in the slag increases from 16% to 22% by using CaO+2%Na2CO3.
  • loading
  • [1]
    Liao Yingying. Discusion on treatment technology of vanadium tailings[J]. Sichuan Chemical Industry, 2018,(6):39−42. (廖盈盈. 提钒尾渣处理技术浅谈[J]. 四川化工, 2018,(6):39−42. doi: 10.3969/j.issn.1672-4887.2018.06.013
    [2]
    Zhang Xiaodong. Research status and development trend of energy saving technology based on ferrosilicon alloy[J]. Ferro-Alloys, 2019,(4):42−44. (张小东. 基于硅铁合金节能技术研究现状以及发展趋势[J]. 铁合金, 2019,(4):42−44.
    [3]
    Xu Chongguang, Wang Hailin, Yang Huan, et al. Comprehensive utilization of vanadium extraction tailings[J]. Ferro-Alloys, 2018,(1):40−43. (许崇光, 王海林, 杨欢, 等. 提钒尾渣的综合利用[J]. 铁合金, 2018,(1):40−43.
    [4]
    Yan Xiting. Research on production technology and application of ferrosilicon alloy[J]. China Metal Bulletin, 2018,(11):297−298. (严西亭. 硅铁合金生产工艺及应用研究[J]. 中国金属通报, 2018,(11):297−298.
    [5]
    Meng Qingjiang. Analysis on the market development of rare earth alloy application in 2017[J]. Rare Earth Information, 2018,(5):37−39. (孟庆江. 2017年稀土合金应用市场发展形势分析[J]. 稀土信息, 2018,(5):37−39.
    [6]
    Yu Bin. Study on knotting process of iron vanadium smelting pouring ingots[J]. Iron Steel Vanadium Titanium, 2016,37(5):30−34. (余彬. 钒铁冶炼浇铸锭模打结工艺研究[J]. 钢铁钒钛, 2016,37(5):30−34.
    [7]
    Hou Jing, Wu Enhui, Li Jun. Research status and progress of comprehensive utilization of vanadium extracted tailings[J]. Protection and Utilization of Mineral Resources, 2017,(6):103−108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017,(6):103−108.
    [8]
    Chen Lian. Study on slag forming process of vanadium extraction by simultaneous dephosphorization of vanadium containing molten iron[J]. Iron Steel Vanadium Titanium, 2018,39(1):97−102,103. (陈炼. 含钒铁水同时脱磷提钒成渣过程研究[J]. 钢铁钒钛, 2018,39(1):97−102,103. doi: 10.7513/j.issn.1004-7638.2018.01.018
    [9]
    Guo Xin, Wang Ling, Zheng Kanghao, et al. Progress in vanadium extraction from vanadium slag[J]. China's Mining, 2016,25(S1):435−437,443. (郭昕, 王玲, 郑康豪, 等. 钒渣提钒工艺及研究进展[J]. 中国矿业, 2016,25(S1):435−437,443.
    [10]
    Xu Xuefeng, Wang Shaowei, Zhou Yaping. Study on industrial production of improving vanadium recovery rate[J]. Contemporary Chemical Research, 2019,(2):120−121. (徐雪峰, 王少伟, 周雅平. 提高钒回收率工业生产研究[J]. 当代化工研究, 2019,(2):120−121. doi: 10.3969/j.issn.1672-8114.2019.02.076
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (70) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return