Volume 43 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Yuan Yipang, Zhou Yuqing, Hong Lukuo, Li Yaqiang, Ai Liqun, Liu Zehua, Lei Yue. Experimental study on reduction of vanadium-titanium magnetite with hydrogen and biomass[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 113-118. doi: 10.7513/j.issn.1004-7638.2022.01.017
Citation: Yuan Yipang, Zhou Yuqing, Hong Lukuo, Li Yaqiang, Ai Liqun, Liu Zehua, Lei Yue. Experimental study on reduction of vanadium-titanium magnetite with hydrogen and biomass[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 113-118. doi: 10.7513/j.issn.1004-7638.2022.01.017

Experimental study on reduction of vanadium-titanium magnetite with hydrogen and biomass

doi: 10.7513/j.issn.1004-7638.2022.01.017
  • Received Date: 2021-11-11
    Available Online: 2022-04-24
  • Publish Date: 2022-02-28
  • Vanadium-titanium magnetite has its unique characteristics like containing many valuable elements, complex phase structure and close intergrowth of iron and titanium, as well as the difficulty of full comprehensive utilization. In this paper, the phase change of vanadium-titanium magnetite reacted with Na2CO3 at high temperature were studied, and the influence of temperature and biomass sawdust on the metallization rate of the reduction product was discussed. The results show that the addition of Na2CO3 can promote reaction of vanadium-titanium magnetite with H2 and favour reducing the iron-titanium oxide in vanadium-titanium magnetite with H2. Increasing the temperature and addition of biomass sawdust both are beneficial to reduction of vanadium-titanium magnetite by H2. The is. When the reducing temperature is 1100 ℃, the metallization rate of vanadium-titanium magnetite can reach 80.22%, and the metallization rate can be increased to 84.47% by adding biomass sawdust under same conditions. The use of H2 to reduce vanadium-titanium magnetite while adding biomass sawdust is expected to achieve high-efficiency enrichment of iron.
  • loading
  • [1]
    Ou Yang, Sun Yongsheng, Yu Jianwen, et al. The research status and development trend of processing and utilization of vanadium-titanium magnetite[J]. Journal of Iron and Steel Research, 2021,33(4):267−278. (欧杨, 孙永升, 余建文, 等. 钒钛磁铁矿加工利用研究现状及发展趋势[J]. 钢铁研究学报, 2021,33(4):267−278.
    [2]
    Zhu Yuexian, Zhang Xian, Xu Yi, et al. Patent analysis of key technologies for comprehensive utilization of vanadium-titanium magnetite[J]. World Science and Technology Research and Development, 2017,39(4):325−331. (朱月仙, 张娴, 许轶, 等. 钒钛磁铁矿综合利用关键技术专利分析[J]. 世界科技研究与发展, 2017,39(4):325−331.
    [3]
    Smirnov L A, Tret'yakov M A, Gladyshev V I. Processing vanadium-bearing titanomagnetites at the nizhniy tagil metallurgical combine[J]. Metallurgist, 2001,45(5-6):232−234.
    [4]
    Ju Dianchun, Wu Zhaoyong, Zhang Rongliang, et al. Research status and prospects of titanium extraction technology from blast furnace slag containing titanium[J]. Modern Engineering, 2019,39(S1):104−107. (居殿春, 武兆勇, 张荣良, 等. 含钛高炉渣提钛技术研究现状及展望[J]. 现代化工, 2019,39(S1):104−107.
    [5]
    Wang Yijie, Xue Yazhou, Pan Mao, et al. Mineralogy characteristics of directly reduced titanium slag in Panzhihua[J]. Journal of Central South University (Natural Science Edition), 2019,50(3):497−505. (王伊杰, 薛亚洲, 潘懋, 等. 攀枝花直接还原钛渣的矿物学特征[J]. 中南大学学报(自然科学版), 2019,50(3):497−505. doi: 10.11817/j.issn.1672-7207.2019.03.001
    [6]
    Hao Jianzhang, Zeng Guanwu. One-step separation test of iron, vanadium and titanium from vanadium-titanium magnetite[J]. Comprehensive Utilization of Mineral Resources, 2020,(6):73−78. (郝建璋, 曾冠武. 钒钛磁铁矿铁、钒、钛一步分离试验[J]. 矿产综合利用, 2020,(6):73−78. doi: 10.3969/j.issn.1000-6532.2020.06.013
    [7]
    Hou Yaobin, Hong Lukuo, Sun Caijiao, et al. Research on low temperature smelting process of vanadium-titanium magnetite alkali fusion[J]. Iron Steel Vanadium Titanium, 2020,41(2):6−13. (侯耀斌, 洪陆阔, 孙彩娇, 等. 钒钛磁铁矿碱熔低温冶炼工艺研究[J]. 钢铁钒钛, 2020,41(2):6−13.
    [8]
    Guo Ke, Zhang Zhiqiang, Wang Shaoyan, et al. Study on separation technology of ferro-titanium in vanadium-titanium magnetite concentrate[J]. Metal Mine, 2019,(8):113−119. (郭客, 张志强, 王绍艳, 等. 钒钛磁铁精矿中钛铁分离技术研究[J]. 金属矿山, 2019,(8):113−119.
    [9]
    Wang Xufeng, Hong Lukuo, Sun Caijiao. Study on the effect of NaOH on the direct reduction of vanadium-titanium magnetite concentrate[J]. Iron Steel Vanadium Titanium, 2020,41(2):89−93. (王旭锋, 洪陆阔, 孙彩娇. NaOH对钒钛磁铁精矿直接还原的影响研究[J]. 钢铁钒钛, 2020,41(2):89−93.
    [10]
    Zhang Xiangguo, Jia Lijun, Wang Bing. Comparative analysis of smelting process of vanadium-titanium magnetite[J]. Shandong Metallurgy, 2019,41(1):39−42. (张向国, 贾利军, 王冰. 钒钛磁铁矿冶炼工艺比较分析[J]. 山东冶金, 2019,41(1):39−42.
    [11]
    Wu Shichao, Sun Tichang, Li Xiaohui, et al. Research progress in direct reduction technology of vanadium-titanium magnetite[J]. China Nonferrous Metallurgy, 2018,47(4):26−30. (吴世超, 孙体昌, 李小辉, 等. 钒钛磁铁矿直接还原技术研究进展[J]. 中国有色冶金, 2018,47(4):26−30. doi: 10.3969/j.issn.1672-6103.2018.04.008
    [12]
    史丽羽. 碱熔盐体系中钒钛磁铁矿还原过程物相转变规律[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018.

    Shi Liyu. Phase transition law of vanadium-titanium magnetite reduction process in alkali molten salt system[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2018.
    [13]
    Zhang Jun, Dai Xiaotian, Yan Dingliu, et al. Carbothermal sodium reduction process of vanadium-titanium magnetite[J]. Iron and Steel, 2016,51(10):6−9. (张俊, 戴晓天, 严定鎏, 等. 钒钛磁铁矿碳热钠化还原工艺[J]. 钢铁, 2016,51(10):6−9.
    [14]
    Liu Xianghai. Experimental study on reduction of Panzhihua low-silicon titanium concentrate[J]. Iron Steel Vanadium Titanium, 2020,41(3):41−46. (刘祥海. 攀枝花低硅钛精矿还原试验研究[J]. 钢铁钒钛, 2020,41(3):41−46. doi: 10.7513/j.issn.1004-7638.2020.03.006
    [15]
    Zheng Peng. Study on the direct reduction characteristics of vanadium-titanium magnetite[J]. Nonferrous Mining and Metallurgy, 2018,34(2):35−38. (郑鹏. 钒钛磁铁矿直接还原特性的研究[J]. 有色矿冶, 2018,34(2):35−38. doi: 10.3969/j.issn.1007-967X.2018.02.009
    [16]
    Huang Zhucheng, Jiang Xiong, Yi Lingyun, et al. The effect of biomass on the reduction behavior of vanadium-titanium magnetite and process enhancement[J]. Iron and Steel, 2021,56(1):12−20. (黄柱成, 姜雄, 易凌云, 等. 生物质对钒钛磁铁矿还原行为影响及过程强化[J]. 钢铁, 2021,56(1):12−20.
    [17]
    肖玮. 基于富氢气体直接还原钛铁矿制备富钛料及钛合金的新工艺研究[D].上海: 上海大学,2014: 62-67.

    Xiao Wei. Technology research of the preparation of titanium-rich material and extraction of Ti-Fe alloy based on hydrogen-rich reduction of ilmenite[D].Shanghai: Shanghai University, 2014: 62-67.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (114) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return