Volume 43 Issue 2
May  2022
Turn off MathJax
Article Contents
Cheng Dengfeng, Zhang Jinhua, Wang Jingran, Ke Changming. Molten salt assisted preparation of TiB2 powder from Ti-Si-Fe and B[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 48-55. doi: 10.7513/j.issn.1004-7638.2022.02.008
Citation: Cheng Dengfeng, Zhang Jinhua, Wang Jingran, Ke Changming. Molten salt assisted preparation of TiB2 powder from Ti-Si-Fe and B[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 48-55. doi: 10.7513/j.issn.1004-7638.2022.02.008

Molten salt assisted preparation of TiB2 powder from Ti-Si-Fe and B

doi: 10.7513/j.issn.1004-7638.2022.02.008
  • Received Date: 2022-02-15
    Available Online: 2022-05-11
  • Publish Date: 2022-04-28
  • TiB2 powders were synthesized in NaCl-KCl molten salt by amorphous boron and Ti-Si-Fe alloy extracted from high titanium blast furnace slag. The effects of reaction temperature, holding time, molten salt amount and mole ratio of B to Ti on the reaction process were investigated. The results show that increasing the reaction temperature or extending the holding time can promote the reaction process. TiB2 begins to form at 850 ℃ and the reaction completes at 1 100 ℃. Molten salt can facilitate the reaction process. The distribution of elements shows that the particles containing Fe also contain Si, corresponding to the product FeSi2. Most of the particles contain Si, Ti and B at the same time, indicating that TiB2 and Si are associated in these particles. A few particles contain only Ti and B, corresponding to TiB2. There are two kinds of particle morphology of the product. One kind of particle presents cracking appearance with cracks or micron holes connected to the interior, which contains TiB2, Si or FeSi2. The other particle is composed of flake TiB2. The reaction mechanism of Ti-Si-Fe alloy with B in molten salt is described below. First of all, titanium reacts with B to form TiB2 , then Si and FeSi2 are released. Most TiB2 nucleate and grow with Si and FeSi2 as the skeleton which maintain the original morphology of Ti-Si-Fe particles. A small amount of TiB2 nucleate and grow in molten salt to form flake TiB2 aggregates. The sequence of reaction between alloy phase and B is Ti5Si3, TiSi, TiFeSi2 and TiSi2.
  • loading
  • [1]
    Ma Junwei, Sui Zhitong, Chen Bingchen. The comprehensive utilization of the tirannium-containing blast slag of Panzhihua Iron & Steel Co.[J]. Metal Mine, 1999,10:42−45. (马俊伟, 隋智通, 陈炳辰. 攀钢含钛高炉渣的综合利用[J]. 金属矿山, 1999,10:42−45.
    [2]
    Xu Ying, Li Dandan, Yang Shanshan, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021,(1):23−31. (许莹, 李单单, 杨姗姗, 等. 含钛高炉渣综合利用研究进展[J]. 矿产综合利用, 2021,(1):23−31. doi: 10.3969/j.issn.1000-6532.2021.01.004
    [3]
    Peng Yi. Development of technologies for recovering titanium from pangang BF slag[J]. Titanium Industry Progress, 2005,22(3):44−49. (彭毅. 攀钢高炉渣提钛技术进展[J]. 钛工业进展, 2005,22(3):44−49. doi: 10.3969/j.issn.1009-9964.2005.03.012
    [4]
    柯昌明, 李楠. 利用含钛炉渣制备钛及钛合金的方法: 中国, ZL200510019664.3[P]. 2005-10-26.

    Ke Changming, Li Nan. Method of preparing titanium and titanium alloy using titanium containing furnace clinker: China, ZL200510019664.3[P]. 2005-10-26.
    [5]
    柯昌明, 韩兵强, 李楠. 一种铝酸盐水泥及其制备方法: 中国, ZL200910060792.0[P]. 2009-02-19.

    Ke Changming, Han Bingqiang, Li Nan. Aluminate cement and preparation thereof: China, ZL200910060792.0[P]. 2009-02-19.
    [6]
    柯昌明, 韩兵强, 李楠, 等. 一种铁铝酸盐水泥及其制备方法: 中国, ZL201010150254.3[P]. 2010-04-14.

    Ke Changming, Han Bingqiang, Li Nan, et al. Aluminoferriate cement and preparation method thereof: China, ZL201010150254.3[P]. 2010-04-14.
    [7]
    柯昌明, 吴海杰, 韩兵强, 等. 一种钒钛硅铁合金的制备方法: 中国, ZL201410132790.9[P]. 2014-02-03.

    Ke Changming, Wu Haijie, Han Bingqiang, et al. Preparation method for vanadium-titanium-silicon-iron alloy: China, ZL201410132790.9[P]. 2014-02-03.
    [8]
    Han Bingqing, Wang Peng, Ke Changming, et al. Hydration behavior of spinel containing high alumina cement from high titania blast furnace slag[J]. Cement & Concrete Research, 2016,79:257−264.
    [9]
    柯昌明, 刘学新, 韩兵强, 等. 高钛型高炉渣环境友好资源化高效综合利用研究[C]//第十一届中国钢铁年会论文集. 北京: 冶金工业出版社, 2017: 1115−1123.

    Ke Changming, Liu Xuexin, Han Bingqiang, et al. Eco-efficient titanium-bearing blast furnace slag recycling[C]//Proceedings of the 11th CSM Steel Congress. Beijing: Metallurgical Industry Press, 2017: 1115−1123.
    [10]
    Wang Jingran, Ke Changming, Zhang Jinhua. Effect of Ti-bearing blast furnace slag on hydration properties of portland cement[J]. Bulletin of the Chinese Ceramic Society, 2020,39(5):1511−1516. (王景然, 柯昌明, 张锦化. 提钛尾渣对硅酸盐水泥水化性能的影响[J]. 硅酸盐通报, 2020,39(5):1511−1516.
    [11]
    柯昌明, 李雪, 韩兵强. 以Ti-Si-Fe合金为原料的TiC材料及其制备方法: 中国, 201110089361.4[P]. 2011-04-11.

    Ke Changming, Li Xue, Han Bingqiang. TiC material with Ti-Si-Fe alloy as raw material and preparation method : China, 201110089361.4[P]. 2011-04-11.
    [12]
    Zhang Jinhua, Xiong Si, Ke Changming, et al. Synthesis and reaction mechanism of Ti3SiC2 by molten salt method from Ti-Si-Fe alloy[J]. Key Engineering Materials, 2017,768:159−166.
    [13]
    Ma Li, Yu Jincheng, Guo Xue, et al. Preparation and sintering of ultrafine TiB2 powders[J]. Ceramics International, 2018,44:4491−4495. doi: 10.1016/j.ceramint.2017.12.009
    [14]
    Karthiselva N S, Murty B S, Bakshi Srinivasa R. Low temperature synthesis of dense TiB2 compacts by reaction spark plasma sintering[J]. Int. J. Refract. Met. Hard Mater., 2015,48:201−210. doi: 10.1016/j.ijrmhm.2014.09.015
    [15]
    Rabiezadeh A, Hadian A M, Ataie A. Synthesis and sintering of TiB2 nanoparticles[J]. Ceramics International, 2014,40(10):15775−15782. doi: 10.1016/j.ceramint.2014.07.102
    [16]
    Tetsushi Matsuda. Synthesis and sintering of TiC-TiB2 composite powders[J]. Materials Today Communications, 2020,25:101457. doi: 10.1016/j.mtcomm.2020.101457
    [17]
    Marina Vlasova, Mykola Kakazey, Pedro Antonio Marquez Aguilar, et al. Processes connected with local laser heating of TiB2 armor ceramics[J]. Science of Sintering, 2019,51(2):125−134. doi: 10.2298/SOS1902125V
    [18]
    Alvar F Sajedi, Heydari M, Kazemzadeh A, et al. Al2O3-TiB2 nanocomposite coating deposition on titanium by air plasma spraying[J]. Materials Today: Proceedings, 2018,5(7, Part 3):15739−15743.
    [19]
    Jerzy Smolik, Joanna Kacprzyn´ska-Gołacka, Sylwia Sowa. The analysis of resistance to brittle cracking of tungsten doped TiB2 coatings obtained by magnetron sputtering[J]. Coatings, 2020,10(9):1−10.
    [20]
    Huang Youguo, Wang Yi, Zhang Xiaohui, et al. Preparation of wettable TiB2-TiB/Ti cathode by electrolytic boronizing for aluminum electrolytic[J]. Journal of Central South University, 2019,26(10):2681−2687. doi: 10.1007/s11771-019-4205-5
    [21]
    Liu Yue, Huang Chuanzhen, Liu Hanlian, et al. The influence of TiB2 content on high temperature flexural strength and reliability of the developed titanium carbonitride based ceramic tool material[J]. Ceramics International, 2020,46(8):10356−10361. doi: 10.1016/j.ceramint.2020.01.032
    [22]
    Qin Bo, Zhou Houming, Zeng Guozhang, et al. Mechanical properties and friction and wear performance of TiB2/TiN/WC composite ceramic tool materials[J]. China Ceramics, 2019,55(5):7−13. (覃波, 周后明, 曾国章, 等. TiB2/TiN/WC复合陶瓷刀具材料力学性能及其摩擦磨损性能[J]. 中国陶瓷, 2019,55(5):7−13.
    [23]
    Fan Xiaowen, Wang Guozhen, Lu Fengxiang. Study on fabrication and tribological properties of TiB2-based cutting tools[J]. Diamond & Abrasives Engineering, 2019,39(6):62−68. (范晓文, 王国珍, 卢凤祥. TiB2基切削刀具的制备和摩擦学性能研究[J]. 金刚石与磨料磨具工程, 2019,39(6):62−68.
    [24]
    Wang Han, Zhang Haiming, Cui Zhenshan, et al. Compressive response and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2021,31(5):1235−1248. doi: 10.1016/S1003-6326(21)65574-7
    [25]
    Yu Changfu, Zhang Zhuhui, Yang Lu, et al. Effect of TiB2 reinforced particle content on properties of 6061 aluminum matrix composites[J]. Nonferrous Metals Processing, 2020,49(2):15−18. (于长富, 张祝珲, 杨路, 等. TiB2增强颗粒含量对6061铝基复合材料性能的影响[J]. 有色金属加工, 2020,49(2):15−18.
    [26]
    Lei Zhenglong, Bi Jiang, Chen Yanbin, et al. Effect of TiB2 content on microstructural features and hardness of TiB2/AA7075 composites manufactured by LMD[J]. Journal of Manufacturing Processes, 2020,53:283−292. doi: 10.1016/j.jmapro.2020.02.036
    [27]
    Radev D D, Marinov M. Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis[J]. J. Alloy. Compd., 1996,244:48−51. doi: 10.1016/S0925-8388(96)02406-1
    [28]
    Oghenevweta J E, Wexler D, Calka A. Sequence of phase evolution during mechanically induced self-propagating reaction synthesis of TiB and TiB2 via magnetically controlled ball milling of titanium and boron powders[J]. J. Alloy. Compd., 2017,701:380−391. doi: 10.1016/j.jallcom.2017.01.016
    [29]
    Tang Wenming, Zheng Zhixiang, Wu Yuchen, et al. Synthesis of TiB2 nanocrystalline powder by mechanical alloying[J]. Transactions of Nonferrous Metals Society of China, 2006,16(3):613−617. doi: 10.1016/S1003-6326(06)60108-8
    [30]
    Sahar Nekahi, Mohammad Vajdi, Farhad Sadegh Moghanlou, et al. TiB2–SiC-based ceramics as alternative efficient micro heat exchangers[J]. Ceramics International, 2019,45(15):19060−19067. doi: 10.1016/j.ceramint.2019.06.150
    [31]
    Zhao Guolong, Huang Chuanzhen, He Ning, et al. Microstructural development and mechanical properties of reactive hot pressed nickel-aided TiB2-SiC ceramics[J]. International Journal of Refractory Metals and Hard Materials, 2016,61:13−21. doi: 10.1016/j.ijrmhm.2016.08.001
    [32]
    Barin I, Platzki G. Thermochemical data of pure substances[M]. 3rd ed. VCH, Weinheim, 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (142) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return