Volume 43 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Lu Chao, Zhang Ao, Yang Zhi, Liu Jia, An Xuguang, Kong Qingquan, Feng Wei, Xu Zhiping. Effect of spark plasma sintering temperature on structure and properties of TiB2/Al composites[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 47-52. doi: 10.7513/j.issn.1004-7638.2022.03.008
Citation: Lu Chao, Zhang Ao, Yang Zhi, Liu Jia, An Xuguang, Kong Qingquan, Feng Wei, Xu Zhiping. Effect of spark plasma sintering temperature on structure and properties of TiB2/Al composites[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 47-52. doi: 10.7513/j.issn.1004-7638.2022.03.008

Effect of spark plasma sintering temperature on structure and properties of TiB2/Al composites

doi: 10.7513/j.issn.1004-7638.2022.03.008
  • Received Date: 2022-03-26
  • Publish Date: 2022-06-30
  • TiB2/Al composites were fabricated by spark plasma sintering using aluminum powders as matrix and TiB2 particles as reinforcement. The effects of different sintering temperatures (500, 525 ℃ and 550 ℃) on the phase composition, relative density, microhardness and tensile/compressive properties of the composites were investigated. The results show that the principal phase of these composites is α-Al, and a small amount of TiB2 phase precipitates when the sintering temperature is higher than 525 ℃. With increasing the sintering temperature, the relative density, microhardness, tensile strength and compressive strength of TiB2/Al composites firstly increases and then decreases, while the elongation and compressibility are minished first and then increased. TiB2/Al composite sintered at 525 ℃ has the optimal comprehensive properties, demonstrating the highest relative density and Vickers hardness of 98.57% and 49.83, respectively, and the maximum tensile strength of 84.9 MPa and compressive strength of 265.1 MPa. When the sintering temperature is as high as 550 ℃, voids are formed in the bulk material and transgranular fracture occurs during the tensile process.
  • loading
  • [1]
    Bi J, Lei Z, Chen. X, et al. Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition[J]. Ceramics International, 2019,45:5680−5692. doi: 10.1016/j.ceramint.2018.12.033
    [2]
    Qu X, Wang F, Shi C, et al. In situ synthesis of a gamma-Al2O3 whisker reinforced aluminium matrix composite by cold pressing and sintering[J]. Materials Science and Engineering:A, 2018,709:223−231. doi: 10.1016/j.msea.2017.10.063
    [3]
    Zamani N A B N, Asif Iqbal A K M, Muhammad Nuruzzaman D. Fabrication and characterization of Al2O3 nanoparticle reinforced aluminium matrix composite via powder metallurgy[J]. Materials Today:Proceedings, 2020,29:190−195. doi: 10.1016/j.matpr.2020.05.541
    [4]
    Deshpande M, Gondil R, Waikar R, et al. Processing and characterization of carbon fiber reinforced aluminium7075[J]. Materials Today:Proceedings, 2018,5:7115−7122. doi: 10.1016/j.matpr.2017.11.376
    [5]
    Zhu C, Su Y, Wang X, et al. Process optimization, microstructure characterization and thermal properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites fabricated by vacuum hot pressing[J]. Composites Part B:Engineering, 2021,215:108746. doi: 10.1016/j.compositesb.2021.108746
    [6]
    Zheng Z, Yang X, Li J, et al. Preparation and properties of graphene nanoplatelets reinforced aluminum composites[J]. Transactions of Nonferrous Metals Society of China, 2021,31:878−886. doi: 10.1016/S1003-6326(21)65546-2
    [7]
    Yu H, Zhang S Q, Xia J H, et al. Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy[J]. Materials Science and Engineering:A, 2021,802:140669. doi: 10.1016/j.msea.2020.140669
    [8]
    Xie Y, Huang Y, Wang F, et al. Deformation-driven metallurgy of SiC nanoparticle reinforced aluminum matrix nanocomposites[J]. Journal of Alloys and Compounds, 2020,823:153741. doi: 10.1016/j.jallcom.2020.153741
    [9]
    Ye T, Xu Y, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite[J]. Materials Science and Engineering:A, 2019,753:146−155. doi: 10.1016/j.msea.2019.03.037
    [10]
    Sharma P, Dwivedi S P, Sharma R, et al. Microstructural and mechanical behavior of aluminium alloy reinforced with TiC[J]. Materials Today:Proceedings, 2020,25:934−937. doi: 10.1016/j.matpr.2020.03.084
    [11]
    Cabeza M, Feijoo I, Merino P, et al. Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite[J]. Powder Technology, 2017,321:31−43. doi: 10.1016/j.powtec.2017.07.089
    [12]
    Chen F, Chen Z, Mao F, et al. TiB2 reinforced aluminum based in situ composites fabricated by stir casting[J]. Materials Science and Engineering:A, 2015,625:357−368. doi: 10.1016/j.msea.2014.12.033
    [13]
    Chen Z, Sun G A, Wu Y, et al. Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites[J]. Materials & Design, 2017,116:577−590.
    [14]
    Zhang L, Li B, Wu H, et al. Microstructure and property characterization of Al-based composites reinforced with CuZrAl particles fabricated by mechanical alloying and spark plasma sintering[J]. Advanced Powder Technology, 2018,29:1695−1702. doi: 10.1016/j.apt.2018.04.004
    [15]
    Wang Z, Tan J, Sun B A, et al. Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles[J]. Materials Science and Engineering:A, 2014,600:53−58. doi: 10.1016/j.msea.2014.02.003
    [16]
    Tan Z, Wang L, Xue Y, et al. High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering[J]. Materials & Design, 2016,109:219−226.
    [17]
    Li J, Li Y, Wang F, et al. Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement[J]. Materials Science and Engineering:A, 2020,792:139755. doi: 10.1016/j.msea.2020.139755
    [18]
    Fan C, Ou L, Hu Z, et al. Microstructures and mechanical properties of BP/7A04 Al matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2019,29:2027−2034. doi: 10.1016/S1003-6326(19)65109-5
    [19]
    Xi L, Guo S, Gu D, et al. Microstructure development, tribological property and underlying mechanism of laser additive manufactured submicro-TiB2 reinforced Al-based composites[J]. Journal of Alloys and Compounds, 2020,819:152980. doi: 10.1016/j.jallcom.2019.152980
    [20]
    Dong B X, Li Q, Wang Z F, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution[J]. Composites Part B:Engineering, 2021,217:108912. doi: 10.1016/j.compositesb.2021.108912
    [21]
    Mozammil S, Karloopia J, Verma R, et al. Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite[J]. Journal of Alloys and Compounds, 2019,793:454−466. doi: 10.1016/j.jallcom.2019.04.137
    [22]
    Dipankar D, Abhijit B, Ajay B. Influence of TiB2 addition on friction and wear behaviour of Al2024-TiB2 ex-situ composites[J]. Transactions of Nonferrous Metals Society of China, 2021,31:1249−1261. doi: 10.1016/S1003-6326(21)65575-9
    [23]
    Yang Q, Ma Y, Chen Z, et al. A new powder metallurgy routine to fabricate TiB2/Al-Zn-Mg-Cu nanocomposites based on composite powders with pre-embedded nanoparticles[J]. Materialia, 2019,8:100458. doi: 10.1016/j.mtla.2019.100458
    [24]
    Nguyen V H, Shahedi Asl M, Hamidzadeh Mahaseni Z, et al. Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method[J]. Ceramics International, 2020,46:25341−25350. doi: 10.1016/j.ceramint.2020.07.001
    [25]
    Sulima I, Putyra P, Hyjek P, et al. Effect of SPS parameters on densification and properties of steel matrix composites[J]. Advanced Powder Technology, 2015,26:1152−1161. doi: 10.1016/j.apt.2015.05.010
    [26]
    Muhammad W N A W, Sajuri Z, Mutoh Y, et al. Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology[J]. Journal of Alloys and Compounds, 2011,509:6021−6029. doi: 10.1016/j.jallcom.2011.02.153
    [27]
    Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia, 2020,185:287−299. doi: 10.1016/j.actamat.2019.11.068
    [28]
    Wang H, Zhang H, Cui Z, et al. Compressive response and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2021,31:1235−1248. doi: 10.1016/S1003-6326(21)65574-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (124) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return