Volume 43 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Li Shasha, Wang Lei, Lv Xinrui, Yu Lili. Study on the microstructure and mechanical properties of the automotive titanium alloy based on friction stir processing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 71-76. doi: 10.7513/j.issn.1004-7638.2022.03.012
Citation: Li Shasha, Wang Lei, Lv Xinrui, Yu Lili. Study on the microstructure and mechanical properties of the automotive titanium alloy based on friction stir processing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 71-76. doi: 10.7513/j.issn.1004-7638.2022.03.012

Study on the microstructure and mechanical properties of the automotive titanium alloy based on friction stir processing

doi: 10.7513/j.issn.1004-7638.2022.03.012
  • Received Date: 2021-12-22
  • Publish Date: 2022-06-30
  • In this investigation, the friction stir processing (FSP) method was used to modify the surface layer of an as-cast Ti8LC automotive titanium alloy using different spindle rotation speeds and travel speeds. In addition, the microstructure and mechanical properties of the alloy samples were tested and compared. The results show that the internal grains of the alloy are refined, and the uniformity of microstructure distribution and the mechanical properties are improved after FSP modification. When the shoulder depression is 0.2 mm, and the spindle inclination angle is 2.5°, the spindle rotation speed increases from 200 r/min to 400 r/min or travel speed from 30 mm/s to 90 mm/s. Meanwhile, the grains of FSP alloy samples are refined first and then coarsened, and the mechanical properties are improved first and then decreased. The best mechanical properties of the modified alloy samples can be obtained with the spindle rotation speed of 300 r/min and the travel speed of 60 mm/s. The tensile strength, yield strength and elongation are 1 046, 729 MPa and 12.7%, respectively. Compared with the as-cast Ti8LC automotive titanium alloy, the tensile strength and yield strength of FSP modified alloy samples are increased by 118 MPa and 125 MPa (with a 12.7% and 20.7% amplitude), respectively.
  • loading
  • [1]
    Zhang Yan, Pang Youjun, Li Yang. Titanium alloy and automobile lightweight technology[J]. Auto Time, 2019,(19):12−14. (张妍, 庞有俊, 李杨. 钛合金与汽车轻量化技术[J]. 时代汽车, 2019,(19):12−14.

    Zhang Yan, Pang Youjun, Li Yang. Titanium alloy and automobile lightweight technology[J]. Auto Time, 2019(19): 12-14.
    [2]
    Chen Zhenglong, Yang Xiao. Application of titanium alloy in modern automobile industry[J]. Modern Components, 2017,(9):46−47. (陈政龙, 杨晓. 钛合金在现代汽车工业中的应用[J]. 汽车工艺师, 2017,(9):46−47. doi: 10.3969/j.issn.1672-657X.2017.09.013

    Chen Zhenglong, Yang Xiao. Application of titanium alloy in modern automobile industry[J]. Modern Components, 2017(9): 46-47. doi: 10.3969/j.issn.1672-657X.2017.09.013
    [3]
    Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy[J]. Iron Steel Vanadium Titanium, 2020,41(3):59−63. (孙凤, 尹晓丽, 赵达. 钒微合金化汽车钛合金的轧制工艺优化[J]. 钢铁钒钛, 2020,41(3):59−63. doi: 10.7513/j.issn.1004-7638.2020.03.009

    Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 59-63. doi: 10.7513/j.issn.1004-7638.2020.03.009
    [4]
    Gan Wei, Xiang Junfeng, Huang Fang. Effect of forging temperature on properties of new titanium alloys for automobiles[J]. Ordnance Material Science and Engineering, 2019,42(5):70−73. (甘伟, 项俊锋, 黄芳. 锻造温度对汽车用新型钛合金性能的影响[J]. 兵器材料科学与工程, 2019,42(5):70−73.

    Gan Wei, Xiang Junfeng, Huang Fang. Effect of forging temperature on properties of new titanium alloys for automobiles [J]. Ordnance Material Science and Engineering, 2019, 42(5): 70-73.
    [5]
    Song Wei. Optimization of casting process for automobile titanium alloy air valves[J]. Hot Working Technology, 2018,47(7):102−104,111. (宋纬. 汽车钛合金气阀的铸造工艺优化[J]. 热加工工艺, 2018,47(7):102−104,111.

    Song Wei. Optimization of casting process for automobile titanium alloy air valves[J]. Hot Working Technology, 2018, 47(7): 102-104, 111.
    [6]
    Wang Hongguang. Influence of forging temperature on performance of a new type niobium-containing titanium alloy bar used in car[J]. Forging & Stamping Technology, 2018,43(8):13−16. (王洪广. 锻造温度对新型含铌汽车钛合金棒材性能的影响[J]. 锻压技术, 2018,43(8):13−16.

    Wang Hongguang. Influence of forging temperature on performance of a new type niobium-containing titanium alloy bar used in car[J]. Forging & Stamping Technology, 2018, 43(8): 13-16.
    [7]
    Zhang Huifang. Preparation of Mo alloy coating on titanium alloy used in cars by double glow plasma alloying process and its friction and wear performance[J]. Materials Protection, 2017,50(6):88−90. (张慧芳. 汽车用钛合金表面双辉等离子Mo合金化层的制备及其摩擦磨损性能[J]. 材料保护, 2017,50(6):88−90.

    Zhang Huifang. Preparation of Mo alloy coating on titanium alloy used in cars by double glow plasma alloying process and its friction and wear performance[J]. Materials Protection, 2017, 50(6): 88-90.
    [8]
    Ren Lihong, Xu Ying. Application of titanium alloy 3D printing technology in automobile engine parts manufacturing[J]. Internal Combustion Engine & Parts, 2021,(2):213−214. (任丽宏, 徐英. 钛合金3D打印技术在汽车发动机零部件制作中的应用[J]. 内燃机与配件, 2021,(2):213−214.

    Ren Lihong, Xu Ying. Application of titanium alloy 3D printing technology in automobile engine parts manufacturing[J]. Internal Combustion Engine & Parts, 2021(2): 213-214.
    [9]
    Jia Weiju, Zeng Weidong, Duan Fengchuan, et al. Study on fatigue crack propagation behavior of low cost titanium alloy Ti8LC[J]. Rare Metal Materials and Engineering, 2009,38(12):2171−2174. (贾蔚菊, 曾卫东, 段风川, 等. Ti8LC低成本钛合金疲劳裂纹扩展行为研究[J]. 稀有金属材料与工程, 2009,38(12):2171−2174. doi: 10.3321/j.issn:1002-185X.2009.12.022

    Jia Weiju, Zeng Weidong, Duan Fengchuan, et al. Study on fatigue crack propagation behavior of low cost titanium alloy Ti8 LC[J]. Rare Metal Materials and Engineering, 2009, 38(12): 2171-2174. doi: 10.3321/j.issn:1002-185X.2009.12.022
    [10]
    Lv Yuting, Nie Bin, Liu Guohao, et al. Effect of friction stir processing (FSP) tool on microstructures and mechanical properties of NiAl bronze alloy[J]. Surface Technology, 2019,48(12):102−107. (吕玉廷, 聂彬, 刘国浩, 等. 搅拌摩擦加工工具对镍铝青铜合金显微组织和机械性能的影响[J]. 表面技术, 2019,48(12):102−107.

    Lv Yuting, Nie Bin, Liu Guohao, et al. Effect of friction stir processing (FSP) tool on microstructures and mechanical properties of NiAl bronze alloy[J]. Surface Technology, 2019, 48(12): 102-107.
    [11]
    Shi Qingyu, Cao Xiong, Li Jiyuan, et al. Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites[J]. Journal of Tsinghua University(Science and Technology), 2017,57(8):792−797. (史清宇, 曹雄, 李积元, 等. FSP制备碳纤维增强铝基复合材料的强韧化机理[J]. 清华大学学报(自然科学版), 2017,57(8):792−797.

    Shi Qingyu, Cao Xiong, Li Jiyuan, et al. Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 792-797.
    [12]
    Wang Saixiang, Zhang Datong. Microstructure and mechanical properties of frictional stirring processed (FSP) MB8 magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2011,31(1):83−86. (王赛香, 张大童. 搅拌摩擦加工MB8镁合金的组织与力学性能分析[J]. 特种铸造及有色合金, 2011,31(1):83−86. doi: 10.3870/tzzz.2011.01.027

    Wang Saixiang, Zhang Datong. Microstructure and mechanical properties of frictional stirring processed (FSP) MB8 magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2011, 31(1): 83-86. doi: 10.3870/tzzz.2011.01.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (78) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return