Volume 43 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Hao Xiaoshuai, Bai Xuefeng, Sun Yanhui, Guo Zhijie, Zeng Jianhua, Zhang Min, Wu Chenhui. Evolution of inclusions in IF steel during continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026
Citation: Hao Xiaoshuai, Bai Xuefeng, Sun Yanhui, Guo Zhijie, Zeng Jianhua, Zhang Min, Wu Chenhui. Evolution of inclusions in IF steel during continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026

Evolution of inclusions in IF steel during continuous casting process

doi: 10.7513/j.issn.1004-7638.2022.03.026
  • Received Date: 2022-03-24
  • Publish Date: 2022-06-30
  • The evolution of inclusions in steel of the continuous casting process of IF steel produced by a plant was studied by systematically sampling including molten steel and casting billet. The methods of analysis mainly include analysis of total oxygen and nitrogen content, ASPEX scanning electron microscope-spectrometer and thermodynamic calculations. The results show that the content of total oxygen in steel during continuous casting process presents a total decreasing trend. But there is a secondary oxidation of molten steel by covering agent or resistant material at the opening stage of tundish. The composition of covering agent or lining should be adjusted appropriately, so as to make the content of T.O and [N] in casting slab is 12×10−6 and 21×10−6, respectively, which meet the control requirements of IF steel. The trend of the number density of inclusions in steel during the continuous casting process is consistent with the trend of total oxygen content. The increase of the number density of inclusions in slab is subject to TiN precipitation during solidification and cooling. The number density of inclusions in the molten steel in the tundish injection area is lower than that in the pouring area during the entire tundish process, whose size is larger. With the pouring, the content of MgO of inclusions in the molten steel of tundish gradually increases, and shows a negative correlation with the size, and the inclusions larger than 10 μm are concentrated in the area with high Al2O3 content. Thermodynamic calculation results show that the stable inclusion phase in the molten steel at 1 600 °C is only Al2O3, but some Al2O3−TiOx inclusions are found in the experimental results, which is due to the addition of titanium alloys in the RH refining process causing the local Ti concentration to be too high, which provides conditions for the formation of TiOx and Al2O3−TiOx. There are TiS-containing inclusions in slab, including pure TiS inclusions and composite inclusions of Al2O3−TiS and TiS-TiN, and the size of such inclusions decreases with the increase of mass fraction of TiS.
  • loading
  • [1]
    Yang Wen, Wang Xinhua, Zhang Lifeng, et al. Cleanliness of low carbon aluminum-killed steels during secondary refining processes[J]. Steel Research International, 2013,84(5):473. doi: 10.1002/srin.201200213
    [2]
    Deng Jianjun, Wang Rui, Hao Yang, et al. Cause and control of strip defects on the surface of IF steel cold-rolled plate[J]. Iron Steel Vanadium Titanium, 2017,38(2):156−160. (邓建军, 王睿, 郝阳, 等. IF钢冷轧板表面条状缺陷成因及控制[J]. 钢铁钒钛, 2017,38(2):156−160. doi: 10.7513/j.issn.1004-7638.2017.02.027

    Deng Jianjun, Wang Rui, Hao Yang, et al. Cause and control of strip defects on the surface of IF steel cold-rolled plate[J]. Iron Steel Vanadium Titanium , 2017, 38(2): 156-160. doi: 10.7513/j.issn.1004-7638.2017.02.027
    [3]
    Yue Feng, Cui Heng, Bao Yanping, et al. Behavior of inclusions in Ti-IF steel[J]. Steelmaking, 2009,25(4):9−12. (岳峰, 崔衡, 包燕平, 等. Ti-IF钢中夹杂物的行为[J]. 炼钢, 2009,25(4):9−12.

    Yue Feng, Cui Heng, Bao Yanping, et al. Behavior of inclusions in Ti-IF Steel[J]. Steelmaking, 2009, 25(4): 9-12.
    [4]
    Wang Quan, Liu Jianhua, Liu Jianfei, et al. Distribution of inclusions in IF steel casting billet[J]. Iron Steel Vanadium Titanium, 2013,34(4):62−67. (王全, 刘建华, 刘建飞, 等. IF钢铸坯中夹杂物的分布规律[J]. 钢铁钒钛, 2013,34(4):62−67. doi: 10.7513/j.issn.1004-7638.2013.04.012

    Wang Quan, Liu Jianhua, Liu Jianfei, et al. Distribution of inclusions in IF steel casting billet[J]. Iron Steel Vanadium Titanium, 2013, 34(4): 62-67. doi: 10.7513/j.issn.1004-7638.2013.04.012
    [5]
    Huang Rikang, Zhang Lifeng, Jiang Renbo, et al. Evolution of non-metallic inclusions in ultra-low carbon aluminum deoxygenated steel continuous casting process[J]. Steelmaking, 2020,36(6):39−45,66. (黄日康, 张立峰, 姜仁波, 等. 超低碳铝脱氧钢连铸过程钢中非金属夹杂物的演变[J]. 炼钢, 2020,36(6):39−45,66.

    Huang Rikang, Zhang Lifeng, Jiang Renbo, et al. Evolution of non-metallic inclusions in ultra-low carbon aluminum deoxygenated steel continuous casting process[J]. Steelmaking, 2020, 36(6): 39-45, 66
    [6]
    Liu Junshan, Ni Hongwei, Zhang Hua, et al. Ultra-low carbon steel inclusion control and research[J]. Iron Steel Vanadium Titanium, 2018,39(6):150−154,167. (刘俊山, 倪红卫, 张华, 等. 超低碳钢夹杂物控制与研究[J]. 钢铁钒钛, 2018,39(6):150−154,167. doi: 10.7513/j.issn.1004-7638.2018.06.024

    Liu Junshan, Ni Hongwei, Zhang Hua, et al. Ultra-low carbon steel inclusion control and research[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 150-154, 167. doi: 10.7513/j.issn.1004-7638.2018.06.024
    [7]
    Deng Birong, Zhang Bo, Zhou Jianfeng, et al. Influence of 210 t RH refining parameters on cleanliness of IF steel and process optimization[J]. Special Steel, 2018,39(3):31−34. (邓必荣, 张波, 周剑丰, 等. 210 t RH精炼参数对IF钢洁净度的影响和工艺优化[J]. 特殊钢, 2018,39(3):31−34. doi: 10.3969/j.issn.1003-8620.2018.03.009

    Deng Birong, Zhang Bo, Zhou Jianfeng, et al. Influence of 210 t RH refining parameters on cleanliness of IF steel and process optimization[J]. Special Steel, 2018, 39(3): 31-34. doi: 10.3969/j.issn.1003-8620.2018.03.009
    [8]
    Wang Yang, Cui Heng, Wang Zheng, et al. Effect of RH refining pure cycle time and sedation time on cleanliness of IF steel[J]. Journal of Iron and Steel Research, 2017,29(8):649−653. (王洋, 崔衡, 王征, 等. RH精炼纯循环时间和镇静时间对IF钢洁净度影响[J]. 钢铁研究学报, 2017,29(8):649−653.

    Wang Yang, Cui Heng, Wang Zheng, et al. Effect of RH refining pure cycle time and sedation time on cleanliness of IF steel[J]. Journal of Iron and Steel Research, 2017, 29(8): 649-653.
    [9]
    Yang Wen, Zhang Ying, Zhang Lifeng, et al. Population evolution of oxide inclusions in Ti-stabilized ultra-low carbon steels after deoxidation[J]. Journal of Iron and Steel Research(International), 2015,22(12):1069−1077. doi: 10.1016/S1006-706X(15)30114-X
    [10]
    Zhang Lifeng, Thomas Brian G. State of the art in evaluation and control of steel cleanliness[J]. ISIJ International, 2003,43(3):282.
    [11]
    蔡开科. 连铸坯质量控制[M]. 北京: 冶金工业出版社, 2009.

    Cai Kaike. Quality control of continuous casting billet[M]. Beijing: Metallurgical Industry Press, 2009.
    [12]
    Katsuhiro Sasai, Yoshimasa Mizukami. Reoxidation behavior of molten steel in tundish[J]. ISIJ International, 2000,40(1):40. doi: 10.2355/isijinternational.40.40
    [13]
    Wang Min, Bao Yanping, Cui Heng, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process[J]. ISIJ International, 2010,50(11):1606. doi: 10.2355/isijinternational.50.1606
    [14]
    Wang Cong, Neerav Verma, Youjong Kwon, et al. A study on the transient inclusion evolution during reoxidation of a Fe–Al–Ti–O melt[J]. ISIJ International, 2011,51(3):375. doi: 10.2355/isijinternational.51.375
    [15]
    Yan Pengcheng, Marie-Aline Van Ende, Enno Zinngrebe, et al. Interaction between steel and distinct gunning materials in the tundish[J]. ISIJ International, 2014,54(11):2551. doi: 10.2355/isijinternational.54.2551
    [16]
    Ren Ying, Zhang Lifeng, Zhang Ying. Modeling reoxidation behavior of Al–Ti-containing steels by CaO–Al2O3–MgO–SiO2 slag[J]. Journal of Iron and Steel Research International, 2018,25(2):146. doi: 10.1007/s42243-018-0015-5
    [17]
    Zhu Tanhua, Zhou Qiuyue, Ren Ying, et al. Inclusion evolution in IF steel during tundish reoxidation[J]. Iron and Steel, 2020,55(3):35−39,49. (朱坦华, 周秋月, 任英, 等. 二次氧化过程IF钢中间包中夹杂物演变行为[J]. 钢铁, 2020,55(3):35−39,49.

    Zhu Tanhua, Zhou Qiuyue, Ren Ying, et al. Evolution behavior of inclusions in if steel tundishes in secondary oxidation process[J]. Iron and Steel, 2020, 55(3): 35-39, 49.
    [18]
    Wang Min, Bao Yanping, Cui Heng, et al. Generation mechanism of Al2O3-TiN inclusion in IF steel[J]. Journal of Iron and Steel Research, 2010,22(7):29−32,55. (王敏, 包燕平, 崔衡, 等. IF钢中Al2O3-TiN复合夹杂生成机理研究[J]. 钢铁研究学报, 2010,22(7):29−32,55.

    Wang Min, Bao Yanping, Cui Heng, et al. Study on the formation mechanism of Al2O3-TiN composite inclusion in IF steel[J]. Journal of Iron and Steel Research, 2010, 22(7): 29-32, 55.
    [19]
    张立峰. 钢中非金属夹杂物: 工业实践[M]. 北京: 冶金工业出版社, 2019.

    Zhang Lifeng. Non-metallic inclusions in steel: Industrial practice[M]. Beijing: Metallurgical Industry Press, 2019.
    [20]
    Yu Shuzhong, Wang Dejun, Liu Zhenglong, et al. Effects of containing calcined forsterite tundish materials on steel cleanliness[J]. Steelmaking, 2019,35(1):39−46. (郁书中, 王德军, 刘正龙, 等. 含烧结镁橄榄石中间包涂料对汽车板钢洁净度的影响[J]. 炼钢, 2019,35(1):39−46.

    Yu Shuzhong, Wang Dejun, Liu Zhenglong, et al. Effect of sintered magnesium-containing olivine tundish coating on cleanliness of automotive sheet steel[J]. Steelmaking, 2019, 35(1): 39-46.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (86) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return