Citation: | Zhu Shaozhen, Wang Jie. Constitutive relationship analysis and microstructural evolution of biomedical Ni-Ti alloy during warm deformation[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 51-57. doi: 10.7513/j.issn.1004-7638.2022.06.008 |
[1] |
Patel S K, Behera B, Swain B, et al. A review on NiTi alloys for biomedical applications and their biocompatibility[J]. Materials Today:Proceedings, 2020,33:5548−5551. doi: 10.1016/j.matpr.2020.03.538
|
[2] |
Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014,56:1078−1113.
|
[3] |
Yin Yuxia, Wang Luning, Hao Shubin, et al. Biomedical application of Ni-Ti alloy in minimally invasive intervention[J]. China Medical Devices, 2019,34(6):153−156. (尹玉霞, 王鲁宁, 郝树斌, 等. 医用镍钛记忆合金在微创介入领域的应用[J]. 中国医疗设备, 2019,34(6):153−156. doi: 10.3969/j.issn.1674-1633.2019.06.042
|
[4] |
Lu Peng, Zhao Yanan, Zhang Yanqiu, et al. Recent research of nickel-titanium shape memory alloy tube[J]. Applied Science and Technology, 2013,40(3):67−74. (陆鹏, 赵亚楠, 张艳秋, 等. 镍钛形状记忆合金管材的研究进展[J]. 应用科技, 2013,40(3):67−74.
|
[5] |
Hu Jie, Liu Li. Study of process techniques of Ti-Ni shape memory alloy capillarity[J]. New Technology & New Process, 2006,(6):51−52. (胡捷, 刘力. 钛镍形状记忆合金毛细管加工工艺研究[J]. 新技术新工艺, 2006,(6):51−52. doi: 10.3969/j.issn.1003-5311.2006.06.021
|
[6] |
易文林. 镍钛形状记忆合金薄壁管滚珠旋压成形研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
Yi Wenlin. Study on ball spinning of thin-walled tube of NiTi shape memory alloy[D]. Harbin: Harbin Engineering University, 2012.
|
[7] |
Yang Yulan, Tong Xuewen, Li Changjiang, et al. A study of the rolling process of TC2 titanium alloy tube[J]. Acta Metallurgica Sinica, 2003,20(4-5):66−69. (羊玉兰, 佟学文, 李长江, 等. TC2钛合金管材工艺研究[J]. 金属学报, 2003,20(4-5):66−69.
|
[8] |
Morakabati M, Aboutalebi M, Kheirandish S, et al. High temperature deformation and processing map of a NiTi intermetallic alloy[J]. Intermetallics, 2011,19(10):1399−1404. doi: 10.1016/j.intermet.2011.05.005
|
[9] |
Shamsolhodaei A, Zarei-Hanzaki A, Ghambari M, et al. The high temperature flow behavior modeling of NiTi shape memory alloy employing phenomenological and physical based constitutive models: A comparative study[J]. Intermetallics, 2014,53:140−149. doi: 10.1016/j.intermet.2014.04.015
|
[10] |
Mirzadeh H, Parsa M H. Hot deformation and dynamic recrystallization of NiTi intermetallic compound[J]. Journal of Alloys and Compounds, 2014,614:56−59. doi: 10.1016/j.jallcom.2014.06.063
|
[11] |
Liu Hanyuan, Yu Zhentao, Yu Sen, et al. Research on hot compressive deformation behavior of Ni-Ti shape memory alloy[J]. Hot Working Technology, 2018,47(24):59−63. (刘汉源, 于振涛, 余森, 等. Ni-Ti形状记忆合金热压缩变形行为的研究[J]. 热加工工艺, 2018,47(24):59−63. doi: 10.14158/j.cnki.1001-3814.2018.24.014
|
[12] |
Zhang Honggang, He Yong, Liu Xuefeng, et al. Hot deformation behavior and constitutive relationship of Ni-Ti shape memory alloy during compression at elevated temperatures[J]. Acta Metallurgica Sinica, 2007,43(9):930−936. (张红钢, 何勇, 刘雪峰, 等. Ni-Ti形状记忆合金热压缩变形行为及本构关系[J]. 金属学报, 2007,43(9):930−936. doi: 10.3321/j.issn:0412-1961.2007.09.007
|
[13] |
Wang Tianxiang, Lu Shiqiang, Wang Kelu, et al. Hot deformation behavior and processing parameter optimization of Ti60 alloy[J]. Rare Metal Materials and Engineering, 2020,49(10):3552−3561. (王天祥, 鲁世强, 王克鲁, 等. Ti60合金的热变形行为及加工工艺参数优化[J]. 稀有金属材料与工程, 2020,49(10):3552−3561.
|
[14] |
Kim S I, Ko B C, Lee C M, et al. Evolution of dynamic recrystallisation in AISI 304 stainless steel[J]. Materials Science and Technology, 2003,19:1648−1652. doi: 10.1179/026708303225008284
|
[15] |
Wang C, Liu Y T, Lin T, et al. Hot compression deformation behavior of Mg-5Zn-3.5Sn-1Mn-0.5Ca-0.5Cu alloy[J]. Materials Characterization, 2019,157:109896. doi: 10.1016/j.matchar.2019.109896
|
[16] |
Zeng Weidong, Zhou Yigang, Zhou Jun, et al. Recent development of processing map theory[J]. Rare Metal Materials and Engineering, 2006,(5):673−677. (曾卫东, 周义刚, 周军, 等. 加工图理论研究进展[J]. 稀有金属材料与工程, 2006,(5):673−677. doi: 10.3321/j.issn:1002-185X.2006.05.001
|
[17] |
Prasad Y. Processing maps: A status report[J]. Journal of Materials Engineering and Performance, 2003,12(6):638−645. doi: 10.1361/105994903322692420
|
[18] |
Prasad Y, Seshacharyulu T. Modeling of hot deformation for microstructural control[J]. International Materials Reviews, 1998,43(6):243−258. doi: 10.1179/imr.1998.43.6.243
|