Volume 43 Issue 6
Jan.  2023
Turn off MathJax
Article Contents
Zhang Rong, Qi Wenjun, Zhang Shuang. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
Citation: Zhang Rong, Qi Wenjun, Zhang Shuang. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026

Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi

doi: 10.7513/j.issn.1004-7638.2022.06.026
  • Received Date: 2022-04-29
  • Publish Date: 2023-01-13
  • In this paper, the molecular dynamics method studied the microstructural evolution, deformation mechanism, and mechanical properties of AlxCoCrFeNi high entropy alloy (HEAs) under uniaxial tension. The effects of Al content, high temperature, and high strain rate on the mechanical properties of AlxCoCrFeNi at 0.1 to 1.0 molar ratio were investigated. The results show that when the molar ratio of Al is 0.1 to 1.0, the yield strain and stress at room temperature (300 K) decrease with the Al content and temperature increase. With the increase of Al content, HEAS will begin to yield at a minor strain and enter the yield stage earlier, which makes HEAS easier to deform and reduce the mechanical properties. At 300 − 1500 K, with the increase in temperature, the dislocations gradually decrease, the interaction between different dislocations is weakened, and the fixed dislocations cannot be formed, which hinders the movement of materials and leads to the decline of material strength. AlxCoCrFeNi yield strain and yield stress are positively correlated with the change of strain rate, and the yield stress is sensitive to high strain rate.
  • loading
  • [1]
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6(5):299−303. doi: 10.1002/adem.200300567
    [2]
    Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy[J]. Acta Materialia, 2014,65:85−97. doi: 10.1016/j.actamat.2013.11.049
    [3]
    Yang C C, Chau J, Weng C J, et al. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process[J]. Materials Chemistry and Physics, 2017,202:151−158. doi: 10.1016/j.matchemphys.2017.09.014
    [4]
    Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J]. Scripta Materialia, 2014,72-73:5−8. doi: 10.1016/j.scriptamat.2013.09.030
    [5]
    Zhang L, Yu P, Cheng H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy[J]. Metallurgical and Materials Transactions A, 2016,47(12):5871−5875. doi: 10.1007/s11661-016-3469-8
    [6]
    Zhao Chendong, Li Jinshan, Liu Y, et al. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation[J]. Journal of Materials Science & Technology, 2021,73:83−90.
    [7]
    Jia Li, Fang Qihong, Liu Bin, et al. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation[J]. RSC Advances, 2016,6(80):76409−76419. doi: 10.1039/C6RA16503F
    [8]
    Zhang Luming, Ma Shengguo, Li Zhiqiang, et al. Molecular dynamics simulation of mechanical properties of AlxCoCrFeNi high entropy alloy[J]. Journal of High Pressure Physics, 2021,35(5):22−30. (张路明, 马胜国, 李志强, 等. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟[J]. 高压物理学报, 2021,35(5):22−30.
    [9]
    Afkham Y, Bahramyan M R. Tensile properties of AlCrCoFeCuNi glassy alloys: A molecular dynamics simulation study[J]. Materials Science & Engineering A, 2017,698:143−151.
    [10]
    Li Jia, Chen Haotian, Li Sixu, et al. Tuning the mechanical behavior of high-entropy alloys via controlling cooling rates[J]. Materials Science & Engineering A, 2019,760:359−365.
    [11]
    Kawamura M, Asakura M, Okamoto N L, et al. Plastic deformation of single crystals of the equiatomic CrMnFeCoNi high-entropy alloy in tension and compression from 10 K to 1273 K[J]. Acta Materialia, 2021,203(supplement):116454.
    [12]
    Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys[J]. Journal of Alloys and Compounds, 2010,497:1−2. doi: 10.1016/j.jallcom.2010.02.156
    [13]
    Sharma A, Balasubramanian G. Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading[J]. Intermetallics, 2017,91:31−34. doi: 10.1016/j.intermet.2017.08.004
    [14]
    Liu Y X, Cheng C Q, Shang J L, et al. Qxidation behavior of high-entropy alloys AlxCoCrFeNi (x=0.15, 0.4) in supercritical water and comparison with HR3C steel[J]. Transactions of Nonferrous Metals Society of China, 2015,25(4):1341−1351. doi: 10.1016/S1003-6326(15)63733-5
    [15]
    Gawel Richard, Rogal Łukasz, Dąbek Jarosław, et al. High temperature oxidation behaviour of non-equimolar AlCoCrFeNi high entropy alloys[J]. Vacuum, 2021,184:109969. doi: 10.1016/j.vacuum.2020.109969
    [16]
    Kemény Dávid Miklós, Miskolcziné Pálfi Nikolett, Fazakas Éva. Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy[J]. Materials Today:Proceedingsy, 2021,45(6):4250−4253.
    [17]
    Wang C T, He Y, Guo Z, et al. Strain rate effects on the mechanical properties of an AlCoCrFeNi high-entropy alloy[J]. Metals and Materials International, 2021,27:2310−2318. doi: 10.1007/s12540-020-00920-5
    [18]
    ZhangY, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys[J]. JOM:The Journal of the Minerals, Metals & Materials Society, 2012,64(7):830−838.
    [19]
    Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995,117(1):1−19. doi: 10.1006/jcph.1995.1039
    [20]
    Antonaglia J, Xie X, Tang Z, et al. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)[J]. JOM, 2014,66(10):2002−2008. doi: 10.1007/s11837-014-1130-9
    [21]
    Zhang Ping, Li Yuantian, Zhang Jinyong, et al. Effect of Si addition on hot corrosion behavior of AlCoCrFeNi high entropy alloys[J]. Rare Metal Materials and Engineering, 2021,50(10):3640−3647. (张平, 李远田, 张金勇, 等. Si对AlCoCrFeNi高熵合金热腐蚀行为的影响[J]. 稀有金属材料与工程, 2021,50(10):3640−3647.
    [22]
    Jiang J, Chen P, Qiu J, et al. Microstructural evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys under uniaxial tension: A molecular dynamics simulations study[J]. Materials Today Communications, 2021,28:102525. doi: 10.1016/j.mtcomm.2021.102525
    [23]
    Farkas D, Caro A. Model interatomic potentials and lattice strain in a high-entropy alloy[J]. Journal of Materials Research, 2018,33(19):3218−3225. doi: 10.1557/jmr.2018.245
    [24]
    Koh S J A, Lee H P, Lu C, et al. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects[J]. Physical Review B, 2005,72(8):85414. doi: 10.1103/PhysRevB.72.085414
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (245) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return