Volume 43 Issue 6
Jan.  2023
Turn off MathJax
Article Contents
Shui Lang, Fu Jianhui. Accelerated search for solid lithium-ion conductor materials based on material genome engineering[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 193-200. doi: 10.7513/j.issn.1004-7638.2022.06.029
Citation: Shui Lang, Fu Jianhui. Accelerated search for solid lithium-ion conductor materials based on material genome engineering[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 193-200. doi: 10.7513/j.issn.1004-7638.2022.06.029

Accelerated search for solid lithium-ion conductor materials based on material genome engineering

doi: 10.7513/j.issn.1004-7638.2022.06.029
  • Received Date: 2022-04-18
  • Publish Date: 2023-01-13
  • We here present a new approach of model construction to search for solid superionic materials in database by using decision tree and random forest algorithms. Based on a data set collected from literature and 20 features computed from lattice parameters, we constructed two decision tree models and a random forest model, as well as a logistic regression model for contrast. In comparison, the random forest model shows low algorithm complexity and better generalization ability. The well-trained models are then used to screen lithium-containing compounds in the material project database. Screening results of the random forest model reduce the candidate materials by 87.76% and consist of several known superionic materials, which exhibits efficiency and effectiveness of the model. The methodology of model building introduced here can remarkably reduce the searching range of materials with desired properties and thus accelerates the development of new materials.
  • loading
  • [1]
    Holdren J P. Materials genome iniative for global competitiveness[M]. Washington, DC: NSTC, 2011.
    [2]
    Liu Q, Peng B, Shen M, et al. Polymer chain diffusion and Li+ hopping of poly(ethylene oxide)/LiAsF6 crystalline polymer electrolytes as studied by solid state NMR and ac impedance[J]. Solid State Ionics, 2014,255:74−79. doi: 10.1016/j.ssi.2013.11.053
    [3]
    Tomita Y, Matsushita H, Kobayashi K, et al. Substitution effect of ionic conductivity in lithium ion conductor, Li3InBr6-xClx[J]. Solid State Ionics, 2008,179:867−870. doi: 10.1016/j.ssi.2008.02.012
    [4]
    Wang J, Cheng C, Altukhov O, et al. Supramolecular functionalities influence the thermal properties: Interactions and conductivity behavior of poly(ethylene glycol)/LiAsF6 blends[J]. Polymers, 2013,5(3):937−953. doi: 10.3390/polym5030937
    [5]
    WangY, Richards W D, Ong S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nat. Mater., 2015,14(10):1026-1031. doi: 10.1038/NMAT4369
    [6]
    Aravindan V, Gnanaraj J, Madhavi S, et al. Lithium-ion conducting electrolyte salts for lithium batteries[J]. Chem. -Eur. J., 2011,17(15):14326−14346. doi: 10.1002/chem.201101486
    [7]
    Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nat. Mater., 2011,10(9):682−686. doi: 10.1038/NMAT3066
    [8]
    Hayashi A , Minami K , Mizuno F , et al. Formation of Li+ superionic crystals from the Li2S-P2S5 melt-quenched glasses[J]. J. Mater. Sci. , 2008 , 43: 1885-1889.
    [9]
    Xiang X D, Sun X, Briceno G, et al. A combinatorial approach to materials discovery[J]. Science, 1995,268(5218):1738−1740. doi: 10.1126/science.268.5218.1738
    [10]
    Fujimura K, Seko A, Koyama Y, et al. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms[J]. Adv. Energy. Mater., 2013,3(8):980−985. doi: 10.1002/aenm.201300060
    [11]
    Gao J, Chu G, He M, et al. Screening possible solid electrolytes by calculating the conduction pathways using bond valence method[J]. Sci. China Phys. Mech., 2014,57(8):1526−1535. doi: 10.1007/s11433-014-5511-4
    [12]
    Sendek A D, Yang Q, Cubuk E D, et al. Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials[J]. Energ. Environ. Sci., 2017,10(1):306−320. doi: 10.1039/c6ee02697d
    [13]
    Zhai X, Chen M, Lu W. Accelerated search for perovskite materials with higher curie temperature based on the machine learning methods[J]. Comput. Mater. Sci., 2018,151:41−48.
    [14]
    Brodley C E, Utgoff P E. Multivariate decision trees[J]. Mach. Learn., 1995,19(1):45−77. doi: 10.1023/A:1022607123649
    [15]
    Quinlan J R. Induction of decision trees[J]. Mach. Learn., 1986,1(1):81−106.
    [16]
    Breiman L. Random forests[J]. Mach. Learn., 2001,45(1):5−32. doi: 10.1023/A:1010933404324
    [17]
    Breiman L. Using iterated bagging to debias regressions[J]. Mach. Learn., 2001,45(3):261−277. doi: 10.1023/A:1017934522171
    [18]
    Yamada K, Kumano K, Okuda T. Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li, 115In NMR[J]. Solid State Ionics, 2006,177:1691−1695. doi: 10.1016/j.ssi.2006.06.026
    [19]
    Stoeva Z, Martin-Litas I, Staunton E, et al. Ionic conductivity in the crystalline polymer electrolytes PEO6: LiXF6, X = P, As, Sb[J]. J. Am. Chem. Soc., 2003,125(15):4619−4626. doi: 10.1021/ja029326t
    [20]
    Yang H, Zhuang G V, Ross Jr. P N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6[J]. J. Power Sources, 2006,161(1):573−579. doi: 10.1016/j.jpowsour.2006.03.058
    [21]
    York S S , Buckner M , Frech R. Ion-polymer and ion-ion interactions in linear poly(ethylenimine) complexed with LiCF3SO3 and LiSbF6[J]. Macromolecules, 2004, 37 (3): 994-999. doi: 10.1021/ma030478 y.
    [22]
    Yaroslavtseva T V , Bushkova O V. Glass transitions and ionic conductivity in a poly(butadiene-acrylonitrile)–LiAsF6 system[J]. Electrochim. Acta, 2011, 57: 212-219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (88) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return