Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Kang Xudong, Chen Keru, Wang Zhen, Du Zhaoxin, Guo Wenxia. Effect of duplex aging on microstructure and mechanical properties of cold-rolled nearly β titanium sheets with high strength[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 44-48. doi: 10.7513/j.issn.1004-7638.2023.01.009
Citation: Kang Xudong, Chen Keru, Wang Zhen, Du Zhaoxin, Guo Wenxia. Effect of duplex aging on microstructure and mechanical properties of cold-rolled nearly β titanium sheets with high strength[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 44-48. doi: 10.7513/j.issn.1004-7638.2023.01.009

Effect of duplex aging on microstructure and mechanical properties of cold-rolled nearly β titanium sheets with high strength

doi: 10.7513/j.issn.1004-7638.2023.01.009
  • Received Date: 2022-10-03
  • Publish Date: 2023-02-28
  • Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe titanium alloy was subjected to duplex aging heat treatment, and the effect of double-stage aging on the microstructure and properties of high-strength β-titanium alloy was comparatively studied. The aging temperature was 650 ℃+450 ℃. The research results show that the mechanical properties of the alloy are significantly improved by the duplex aging treatment. When pre-aging is at 650 ℃, the matrix first precipitates α phase with a larger size, and the subsequent low temperature re-aging continues to precipitate secondary α phase with a smaller size. Under the combined action of two sizes of α phase, the alloy with the duplex aging obtains excellent mechanical properties with a strength of 1504 MPa and an elongation of about 10.3%.
  • loading
  • [1]
    梁治国, 王晓晨. 我国钛合金板带产业现状及生产技术研究热点分析[J]. 新材料产业, 2012(3): 13-16.

    Liang Zhiguo, Wang Xiaochen, Analysis of industry status and production technology of titanium alloy strip[J]. Advanced Materials Industry, 2012(3): 13-16.
    [2]
    Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3):844−879. doi: 10.1016/j.actamat.2012.10.043
    [3]
    Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry[J]. Materials Science and Engineering, 1998,A243:305−315.
    [4]
    Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering:A, 1996,213:103−114. doi: 10.1016/0921-5093(96)10233-1
    [5]
    Yang Guanjun, Zhao Yongqing, Yu Zhentao, et al. New advances in titanium alloy research, processing and applications[J]. Materials Reports, 2001,(10):19−21. (杨冠军, 赵永庆, 于振涛, 等. 钛合金研究、加工与应用的新进展[J]. 材料导报, 2001,(10):19−21. doi: 10.3321/j.issn:1005-023X.2001.10.007
    [6]
    Zhu Wenguang, Lei Jia, Tan Changsheng, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility[J]. Materials & Design, 2019,168(15):107640.
    [7]
    Chen Yuyong, Du Zhaoxin, Xiao Shulong, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy[J]. Journal of Alloys and Compounds, 2014,586:588−592. doi: 10.1016/j.jallcom.2013.10.096
    [8]
    Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. Journal of Alloys and Compounds, 2013,550:23−30. doi: 10.1016/j.jallcom.2012.09.140
    [9]
    Terlinde G T, Duerig T W, Williams J C. Microstructure, tensile deformation, and fracture in aged Ti-10V-2Fe-3Al[J]. Metallurgical Transactions A, 1983,14(10):2101−2115. doi: 10.1007/BF02662377
    [10]
    姜智勇. TB8钛合金强韧化工艺技术研究[D]. 南昌: 南昌航空大学, 2018.

    Jiang Zhiyong, Study on strengthening and toughening technology of TB8 titanium alloy[D]. Nanchang: Nanchang Hangkong University, 2018.
    [11]
    Du Zhaoxin, Liu Guolong, Cui Xiaoming, et al. Effect of pre-aging on microstructure and mechanical properties of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe alloy[J]. Rare Metal Materials and Engineering, 2019,48(6):1904−1908. (杜赵新, 刘国龙, 崔晓明, 等. 预时效工艺对Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2019,48(6):1904−1908.
    [12]
    Zhang Shuzhi, Zhang Changjiang, Hou Zhaoping, et al. Effects of rolling deformation on microstructure and hardness of Ti-45Al-9Nb-0.3Y alloy[J]. Journal of Rare Earths, 2016,34(2):197−202. doi: 10.1016/S1002-0721(16)60014-5
    [13]
    Martin Ferreira Fernandes, Verônica Mara de Oliveira Velloso, Herman Jacobus Cornelis Voorwald. Investigation of the damage and fracture of Ti-6Al-4V titanium alloy under dwell-fatigue loadings[J]. Procedia Structural Integrity, 2022,35:141−149. doi: 10.1016/j.prostr.2021.12.058
    [14]
    Yang Liu, Samuel C V Lim, Chen Ding, et al. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys[J]. Journal of Materials Science & Technology, 2022,97(2):101−112.
    [15]
    Taylor J A, Parker B A, Polmear I J. Precipitation in Al-Cu-Mg-Ag casting alloy[J]. Metal Science, 1978,12(10):478−482. doi: 10.1179/030634578790433341
    [16]
    Li Silan, Hou Zhimin, Yin Yanfei, et al. Influence of heat treatment on microstructure and mechanical properties of TB2 titanium alloy in hot working state[J]. Titanium Industry Progress, 2015,32(6):31−35. (李思兰, 侯智敏, 尹雁飞, 等. 热处理对热加工态TB2钛合金显微组织及力学性能的影响[J]. 钛工业进展, 2015,32(6):31−35. doi: 10.13567/j.cnki.issn1009-9964.2015.06.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (115) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return