Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Zhu Qiangbin, Ji Dengping, Yan Daocong, Li Li, Fu Jianxun. Effect of Te on sulfides and properties of 303Cu stainless steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 188-196. doi: 10.7513/j.issn.1004-7638.2023.01.029
Citation: Zhu Qiangbin, Ji Dengping, Yan Daocong, Li Li, Fu Jianxun. Effect of Te on sulfides and properties of 303Cu stainless steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 188-196. doi: 10.7513/j.issn.1004-7638.2023.01.029

Effect of Te on sulfides and properties of 303Cu stainless steel

doi: 10.7513/j.issn.1004-7638.2023.01.029
  • Received Date: 2022-01-01
  • Publish Date: 2023-02-28
  • In order to study the industrial application effect of Te metallurgy in 303Cu stainless steel, the industrial production test of adding Te to 303Cu stainless steel was carried out. The influence of Te addition on the corrosion resistance of 303Cu free-cutting stainless steel was investigated, and the influence of Te on the corrosion resistance of 303Cu was verified. The morphology, size distribution, cutting performance, corrosion resistance, and hardness change of sulfide in 303Cu stainless steel and 303Cu telluride modified casting billet and rolling material was compared and analyzed using Zeiss metallographic microscope, scanning electron microscope, three-dimensional corrosion etching, surface roughness analyzer, salt spray test, and microhardness. The results show that the length and width of the sulfide in the 303Cu stainless steel (Te modified) billet are smaller, the distribution is more uniform, and the hardness of the sulfide increases. After the Te modified 303Cu rolling material, the sulfide changes from a long strip to a spindle, which effectively inhibits the deformation of the sulfide in the rolling process. After TE modification, the proportion of C-type chips increases, and the surface roughness decreases. After TE modification, the corrosion area of the rolled material decreased compared with the original sample under 120 h and 240 h neutral salt spray test.
  • loading
  • [1]
    Yang Wen, Yang Xiaogang, Zhang Lifeng, et al. Review of Control of MnS Inclusions in Steel[J]. Steelmaking, 2013,29(6):71−78. (杨文, 杨小刚, 张立峰, 等. 钢中MnS夹杂物控制综述[J]. 炼钢, 2013,29(6):71−78.
    [2]
    Yu Zhe, Liu Chengjun, Min Yi, et al. Experimental Study on Inclusions Control of Resulfurized Free Cutting Steel[J]. Iron Steel Vanadium Titanium, 2017,38(3):140−144. (于哲, 刘承军, 闵义, 等. 含硫易切削钢夹杂物控制试验研究[J]. 钢铁钒钛, 2017,38(3):140−144. doi: 10.7513/j.issn.1004-7638.2017.03.025
    [3]
    Effects of sulfur addition methods and Ca-Si treatment on the microstructure and properties of 30MnVS[J]. International Journal of Minerals Metallurgy and Materials, 2009, 16(6): 650−653.
    [4]
    Ma Baoguo, Feng Changmin. Production Practice of Stainless Steel Wire Rods 303Cu and 302HQ[J]. Baosteel Technology, 2006,(6):32−35. (马宝国, 冯倡敏. 不锈钢线材303Cu和302HQ的生产实践[J]. 宝钢技术, 2006,(6):32−35. doi: 10.3969/j.issn.1008-0716.2006.06.008
    [5]
    Wang Shaobing. The Production Practice of Free-cutting 303Cu Stainless Steel Wire Rod[J]. Anhui Metallurgy, 2018,88(3):37−40. (王哨兵. 303Cu易切削不锈钢盘条生产实践[J]. 安徽冶金, 2018,88(3):37−40.
    [6]
    Li Jie, Zhu Qiangbin, Tian Qianren, et al. Modified Morphology of MnS Inclusions in Tellurium Treated 303Cu Stainless Steel[J]. Iron Steel Vanadium Titanium, 2020,41(6):135−141. (李杰, 朱强斌, 田钱仁, 等. 碲改质303Cu不锈钢中MnS夹杂物形态[J]. 钢铁钒钛, 2020,41(6):135−141.
    [7]
    Hao Yuan, Zhu Pingshun, Xu Jincheng, et al. Tellurium Bearing Inclusion in Cast Iron[J]. Modern Cast Iron, 1990,(2):6−10. (郝远, 朱平顺, 徐金城, 等. 铸铁中的碲夹杂物[J]. 现代铸铁, 1990,(2):6−10.
    [8]
    Zhang Shuo, Yang Shufeng, Li Jingshe, et al. Morphology of MnS inclusions in Y15 high sulfur free-cutting steel by tellurium treatment[J]. Iron and Steel, 2017,052(9):27−33,41. (张硕, 杨树峰, 李京社, 等. 碲处理控制Y15易切削钢中MnS夹杂物形貌[J]. 钢铁, 2017,052(9):27−33,41.
    [9]
    A Mahmutoviü, and M. Rimac . Modification of non-metallic inclusions by tellurium in austentic statenitic stainless steel[C]//. 19 h International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology”. Barcelona, Spain: TMT, 2015.
    [10]
    Yaguchi H, Onodera N. The Effect of Tellurium on the Machinability of AISI 12L14+Te Steel[J]. Transactions of the Iron and Steel Institute of Japan, 2006,28(12):1051−1059.
    [11]
    Bai Xuxu, Yang Shufeng, Liu Wei, et al. Effect of tellurium treatment on modification of MnS inclusion in 20CrMnTi gear steel[J]. Iron & Steel, 2019,54(12):41−47. (白旭旭, 杨树峰, 刘威, 等. 碲处理对20CrMnTi齿轮钢中MnS夹杂物改性效果[J]. 钢铁, 2019,54(12):41−47.
    [12]
    Shen P, Zhou L, Yang Q, et al. Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel[J]. Metallurgical Research and Technology, 2020,117,(6):615. doi: 10.1051/metal/2020066
    [13]
    王晓红, 谢兵, 冯仲渝. 国内外易切削钢的现状和研究进展[J], 特殊钢, 2005, 26(4): 26-28.

    Wang Xiaohong, Xie Bing, Feng Zhongyu. Present status and evelopment of research on free cutting steel at home and abroad[J]. Special Steel, 2005, 26(4): 26-28.
    [14]
    Wang Juan, Jia Guodoong. Study on mechanical properties and corrosion resistance of high performance austenitic stainless steel[J]. Metallurgical Standardization & Quality, 2019,(3):16−18). (王娟, 贾国栋. 高性能奥氏体不锈钢力学性能及耐蚀性能研究[J]. 冶金标准化与质量, 2019,(3):16−18).
    [15]
    Qin Chunjie, Xia mingzhe, Tu Liqun. Study on the effect of inclusion on properties of frec-cutting steel[J]. Journal of Zhejiang University of Technology, 2015,43(4):412−415. (秦春节, 夏明哲, 屠立群. 夹杂物对易切削钢性能的影响机理研究[J]. 浙江工业大学学报, 2015,43(4):412−415.
    [16]
    Jiang Guanghui, Gu Longjian, Shi Zhe, et al. General situation and trend for free-cutting steel[J]. Sichuan Metallurgy, 2006,28(5):10−14. (蒋光辉, 古隆建, 施哲, 等. 易切削钢现状与发展趋势[J]. 四川冶金, 2006,28(5):10−14.
    [17]
    Wu Di, Li Zhuang. Study of free cutting austenitic stainless steel containing sulfur, rare earths and bismuth[J]. Iron & Steel, 2011,46(8):78−82. (吴迪, 李壮. 含硫、稀土、铋等合金元素的易切削奥氏体不锈钢研究[J]. 钢铁, 2011,46(8):78−82.
    [18]
    Mahmutovi A, Nagode A, Rim Ac M, et al. Modification of the inclusions in austenitic stainless steel by adding tellurium and zirconium[J]. Materiali in Tehnologije, 2017,51(3):523−528. doi: 10.17222/mit.2015.297
    [19]
    Mujagi D , Hadali M , Imamovi A , et al. Influence of boron, zirconium and tellurium on the mechanical properties of austenitic stainless steel. 2021. Stainless Steel[C]// .12th scientific/Research Symposium with International Participation “Metallic And Nonmetallic Materials”,B&H ,2021.
    [20]
    Wu Liangping, Sun Han, Xie Jianbo, et al. Analysis on split-head cracking of Y1Cr13 stainless rolled bar[J]. Iron Steel Vanadium Titanium, 2021,42(1):176−183. (吴良平, 孙晗, 谢剑波, 等. Y1Cr13不锈钢轧材劈头开裂原因分析[J]. 钢铁钒钛, 2021,42(1):176−183.
    [21]
    Zhang Panpan, Wang Dong, Shen Ping, et al. Effect of tellurium on the sulfide and machinability of free cutting steel[J]. Steelmaking, 2021,37(3):66−73. (张盼盼, 王冬, 沈平, 等. 碲对易切削钢硫化物及切削性能的影响[J]. 炼钢, 2021,37(3):66−73.
    [22]
    Su Yixiang, Bao Yangdong, Liao Naifei, et al. Corrosion behavior of Te-Ni-Cr alloy in 3.5% NaCl solution[J]. Journal of Chinese Society for Corrosion and Protection, 2011,31(6):462−466. (苏义祥, 鲍艳东, 廖乃飞, 等. Te-Ni-Cr合金在3.5%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2011,31(6):462−466.
    [23]
    Liu Xiaotong, Wu Huibin, Liu Xinghai, et al. Effects of Mo on corrosion performance of E36 Steel for COT bottom plate[J]. Hot Working Technology, 2014,(2):1−4. (刘晓童, 武会宾, 刘星海, 等. Mo对货油舱下底板用E36级船板钢耐腐蚀性能的影响[J]. 热加工工艺, 2014,(2):1−4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article Metrics

    Article views (118) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return